Skip to main content
Log in

Modeling of the Influence of the Thickness of an Insulating Film on a Cathode Surface on its Effective Secondary-Electron Emission Yield in Low-Current Gas Discharge

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A model of low-current (Townsend) gas discharge in the presence of a thin insulating film on the surface of a cathode is formulated. It takes into account, along with ion-induced secondary-electron emission from the cathode, also the field emission of electrons from the cathode metal substrate into the film under a strong electric field, which is generated in the insulator when the current flows in the discharge. The emission efficiency of the film and the discharge characteristics are calculated as functions of its thickness. It is shown that the experimentally observed nonmonotonic dependences of the effective secondary-electron emission yield of the cathode and discharge ignition voltage on the film thickness can be explained by the nonuniformity of the electric-field distribution across the film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Yu. P. Raizer, Physics of Gas Discharge (Intellekt, Dolgoprudnyi, 2009) [in Russian].

  2. A. A. Kudryavtsev, A. S. Smirnov, and L. D. Tsendin, Physics of Glow Discharge (Lan’, St. Petersburg, 2010) [in Russian].

  3. A. Bogaerts and R. Gijbels, Phys. Rev. A 52 (5), 3743 (1995). https://doi.org/10.1103/PhysRevA.52.3743

    Article  Google Scholar 

  4. A. V. Phelps and Z. Lj. Petrović, Plasma Sources Sci. Technol. 8 (3), R21 (1999). https://doi.org/10.1088/0963-0252/8/3/201

    Article  Google Scholar 

  5. A. P. Bokhan, P. A. Bokhan, and D. E. Zakrevsky, Appl. Phys. Lett. 86 (15), 151503 (2005). https://doi.org/10.1063/1.1901819

    Article  Google Scholar 

  6. R. D. Aitov, A. P. Korzhavyi, and V. I. Kristya, Obz. Elektron. Tekh., Ser. 6., No. 5, 48 (1991).

    Google Scholar 

  7. M.-B. Lee, S.-H. Hahm, J.-H. Lee, and Y.-H. Song, Appl. Phys. Lett. 86 (12), 123511 (2005). https://doi.org/10.1063/1.1894593

    Article  Google Scholar 

  8. V. Ptitsin, J. Phys.: Conf. Ser. 291 (1), 012019 (2011). https://doi.org/10.1088/1742-6596/291/1/012019

    Google Scholar 

  9. V. I. Kristya and Ye Naing Tun, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9 (2), 280 (2015). https://doi.org/10.1134/S1027451015020135

    Article  Google Scholar 

  10. G. G. Bondarenko, M. R. Fisher, and V. I. Kristya, Vacuum 129, 188 (2016). https://doi.org/10.1016/j.vacuum.2016.01.008

    Article  Google Scholar 

  11. G. G. Bondarenko, V. I. Kristya, and D. O. Savichkin, Izv. Vyssh. Uchebn. Zaved., Fiz. 60 (2), 129 (2017).

    Google Scholar 

  12. M. Suzuki, M. Sagawa, T. Kusunoki, et al., IEEE Trans. Electron Devices 59 (8), 2256 (2012). https://doi.org/10.1109/TED.2012.2197625

    Article  Google Scholar 

  13. L. Eckertova and J. Boček, Thin Solid Films 13 (2), 237 (1972). https://doi.org/10.1016/0040-6090(72)90289-1

    Article  Google Scholar 

  14. O. N. Kryutchenko, A. F. Mannanov, A. A. Nosov, et al., Poverkhnost: Fiz., Khim., Mekh., No. 6, 93 (1994).

  15. E. V. Zykova, E. T. Kucherenko, and V. Ya. Aivazov, Radiotekh. Elektron. 24 (7), 1464 (1979).

    Google Scholar 

  16. R. D. Forrest, A. P. Burden, and S. R. P. Silva, Appl. Phys. Lett. 73 (25), 3784 (1998). https://doi.org/10.1063/1.122894

    Article  Google Scholar 

  17. A. Modinos, Field, Thermionic, and Secondary Electron Emission Spectroscopy (Plenum Press, New York, 1984). https://doi.org/10.1007/978-1-4757-1448-7

    Book  Google Scholar 

  18. L. Eckertova, Int. J. Electron. 69 (1), 65 (1990). https://doi.org/10.1080/00207219008920292

    Article  Google Scholar 

  19. T. W. Hickmott, J. Appl. Phys. 87 (11), 7903 (2000). https://doi.org/10.1063/1.373474

    Article  Google Scholar 

  20. L. Eckertova, Czech. J. Phys. B 39 (5), 559 (1989). https://doi.org/10.1007/BF01597720

    Article  Google Scholar 

  21. P. Lerner, P. H. Cutler, and N. M. Miskovsky, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 15 (2), 337 (1997). https://doi.org/10.1116/1.589317

    Article  Google Scholar 

  22. T. W. Hickmott, J. Appl. Phys. 108 (9), 093703 (2010). https://doi.org/10.1063/1.3504220

    Article  Google Scholar 

  23. R. G. Forbes, C. J. Edgcombe, and U. Valdrè, Ultramicroscopy 95, 57 (2003). https://doi.org/10.1016/S0304-3991(02)00297-8

    Article  Google Scholar 

  24. E. Hourdakis, G. W. Bryant, and N. M. Zimmerman, J. Appl. Phys. 100 (12), 123306 (2006). https://doi.org/10.1063/1.2400103

    Article  Google Scholar 

  25. N. S. Xu, J. Chen, and S. Z. Deng, Appl. Phys. Lett. 76 (17), 2463 (2000). https://doi.org/10.1063/1.126377

    Article  Google Scholar 

  26. C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, J. Appl. Phys. 47 (12), 5248 (1976). https://doi.org/10.1063/1.322600

    Article  Google Scholar 

  27. R. G. Forbes, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 17 (2), 534 (1999). https://doi.org/10.1116/1.590589

    Article  Google Scholar 

  28. G. G. Bondarenko, V. I. Kristya, and D. O. Savichkin, Vacuum 149, 114 (2018). https://doi.org/10.1016/j.vacuum.2017.12.028

    Article  Google Scholar 

  29. E. D. Savoye and D. E. Anderson, J. Appl. Phys. 38 (8), 3245 (1967). https://doi.org/10.1063/1.1710096

    Article  Google Scholar 

  30. T. Kusunoki, M. Sagava, M. Suzuki, et al., IEEE Trans. Electron Devices 49 (6), 1059 (2002). https://doi.org/10.1109/TED.2002.1003743

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed within the framework of the program “Organization of Scientific Researches” of the Ministry of Science and Higher Education of the Russian Federation in Bauman Moscow State Technical University (project 3.8408.2017/6.7) and was supported financially by the Russian Foundation for Basic Researches and the Kaluga Region Government (project no. 18-42-400001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Kristya.

Additional information

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kristya, V.I., Ha, M.T. & Fisher, M.R. Modeling of the Influence of the Thickness of an Insulating Film on a Cathode Surface on its Effective Secondary-Electron Emission Yield in Low-Current Gas Discharge. J. Surf. Investig. 13, 339–343 (2019). https://doi.org/10.1134/S1027451019020319

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451019020319

Keywords:

Navigation