Skip to main content
Log in

Molecular Dynamics Simulation of Physical Sputtering of Nanoporous Silicon-Based Materials with Low Energy Argon

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The process of the physical sputtering of the (001) surface of continuous and nanoporous crystalline silicon by 100- and 200-eV Ar ions is simulated using the molecular dynamics method. The features of the process in porous materials are revealed. The dependences of the sputtering yield on the fluence and energies of incident ions are obtained. The structural changes under ion bombardment are described. The dissimilarity between the sputtering mechanisms for materials differing in pore radii and the degree of porosity is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. R. Baklanov, J.-F. de Marneffe, D. Shamiryan, et al., J. Appl. Phys. 113, 041101 (2013). doi 10.1063/1.4765297

    Article  Google Scholar 

  2. A.-P. Prskabo, S. Schmauder, C. Ziebert, et al., Comput. Mater. Sci. 50, 1320 (2011). doi 10.1016/j.commatsci.2010.08.006

    Article  Google Scholar 

  3. N. A. Kubota, D. J. Economou, and S. J. Plimpton, J. Appl. Phys. 83, 4055 (1998). doi 10.1063/1.367225

    Article  Google Scholar 

  4. P. C. Zalm, J. Appl. Phys. 54, 2660 (1983). doi 10.1063/1.332340

    Article  Google Scholar 

  5. D. B. Graves and P. Brault, J. Phys. D: Appl. Phys. 42, 194011 (2009). doi 10.1088/022-3727/42/19/194011

    Article  Google Scholar 

  6. M. Z. Hossain, J. B. Freund, and H. T. Johnson, Nucl. Instrum. Methods Phys. Res., Sect. B 257, 1061 (2009). doi 10.1016/j.nimb.2009.01.137

    Google Scholar 

  7. D. Humbird and D. B. Graves, Pure Appl. Chem. 74, 419 (2002). doi 10.1351/pac200274030419

    Article  Google Scholar 

  8. F. H. Stillinger and T. A. Weber, Phys. Rev. B: Condens. Matter Mater. Phys. 31, 5262 (1985). doi 10.1103/PhysRevB.31.5262

    Article  Google Scholar 

  9. R. Smith, Atomic and Ion Collisions in Solids and at Surfaces: Theory, Simulation and Applications (Cambridge Univ. Press, New York, 2005).

    Google Scholar 

  10. M. Timonova, B.-J. Lee, and B. J. Thijsse, Nucl. Instrum. Methods Phys. Res., Sect. B 225, 195 (2007). doi 10.1016/j.nimb.2006.11.023

    Google Scholar 

  11. M. I. Baskes, Phys. Rev. B: Condens. Matter Mater. Phys. 46, 2727 (1992). doi 10.1103/PhysRevB.46.2727

    Article  Google Scholar 

  12. M. C. Moore, N. Kalyanasundaram, J. B. Freund, and H. T. Johnson, Nucl. Instrum. Methods Phys. Res., Sect. B 225, 241 (2004). doi 10.1016/j.nimb.2004.04.175

    Google Scholar 

  13. T. V. Rakhimova, D. V. Lopaev, Yu. A. Mankelevich, et al., J. Phys. D: Appl. Phys. 48, 175203 (2015). doi 10.1088/0022-3727/48/17/175203

    Article  Google Scholar 

  14. A. P. Palov, E. N. Voronina, T. V. Rakhimova, et al., J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33, 020603 (2016). doi 10.1116/1.4906816

    Google Scholar 

  15. S. Plimpton, J. Comput. Phys. 117, 1 (1995). doi 10.1006/jcph.1995.1039

    Article  Google Scholar 

  16. V. Sadovnichy, A. Tikhonravov, Vl. Voevodin, and Vl. Opanasenko, in Contemporary High Performance Computing: From Petascale to Exascale, Ed. by J. S. Vetter (Chapman and Hall/CRC, 2013), p. 283.

    Google Scholar 

  17. A. Stukovski, Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010). doi 10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  18. N. Laegreid and G. K. Wehner, J. Appl. Phys. 32, 365 (1961). doi 10.1063/1.1736012

    Article  Google Scholar 

  19. J. W. Coburn, H. F. Winters, and T. J. Chuang, J. Appl. Phys. 48, 3532 (1977). doi 10.1063/1.324150

    Article  Google Scholar 

  20. R. W. Kelsall, I. W. Hamley, and M. Geoghegan, Nanoscale Science and Technology (Wiley, Chichester, 2005).

    Book  Google Scholar 

  21. B. D. Summ and N. I. Ivanova, Russ. Chem. Rev. 69, 911 (2000). doi 10.1070/RC2000v069n11ABEH000616

    Article  Google Scholar 

  22. R. C. Tolman, J. Chem. Phys. 17, 333 (1949). doi 10.1063/1.1747247

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Russian Science Foundation (grant no. 14-12-01012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Sycheva.

Additional information

Translated by L. Kulman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sycheva, A.A., Voronina, E.N. & Rakhimova, T.V. Molecular Dynamics Simulation of Physical Sputtering of Nanoporous Silicon-Based Materials with Low Energy Argon. J. Surf. Investig. 12, 1270–1277 (2018). https://doi.org/10.1134/S1027451019010191

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451019010191

Keywords:

Navigation