Skip to main content
Log in

Blistering in Molybdenum Foils under Exposure to the Glow Discharge of D2‒N2 Mixtures

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The evolution of indestructible blistering in molybdenum foils with the Mo {100} texture is investigated in dc glow discharge in a D2–N2 mixture with a nitrogen molar fraction in the mixture varying from zero to unity at 100 V potential negative with respect to plasma, a total pressure of 15 Pa, and temperatures of 30–60°C. After the addition of 0.01N2 to the deuterium discharge, the surface area occupied by the blisters increases from 2 to 5% and reaches its maximum of 11% upon exposure to D2−0.04N2 mixture discharge (the fluence is 4 × 1019 cm–2). Afterward, the area decreases, and blistering is absent in the pure N2 discharge. The amount of deuterium desorbed from the samples upon heating also increases with the addition of nitrogen. In accordance with X-ray photoelectron spectroscopy data, a nitride layer about 5 nm thick is formed if small amounts of N2 are added to D2. This layer is assumed to slow both the recombination rate of atomic deuterium coming from the material bulk to the surface and the transfer of D2 molecules into the gas phase. At the same time, the nitride layer increases the diffusion flux of D atoms into the foil bulk, promoting blister growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. M. I. Guseva and Yu. V. Martynenko, Sov. Phys. Usp. 24, 996 (1981).

  2. M. Kaminsky and S. K. Das, in Proc. 9th Summer School and Symposium on the Physics of Ionized Gases (Dubrovnik, 1978), p. 27.

  3. V. Kh. Alimov, J. Roth, and S. Lindig, J. Nucl. Mater. 381, 267 (2008).

    Article  Google Scholar 

  4. M. Balden, S. Lindig, A. Manhard, and J.-H. You, J. Nucl. Mater. 414, 69 (2011).

    Article  Google Scholar 

  5. M. H. J. Hoen, M. Balden, A. Manhard, et al., Nucl. Fusion 54, 083014 (2014).

    Article  Google Scholar 

  6. H. Skinner, A. A. Haasz, V. Kh. Alimov, et al., Fusion Sci. Technol. 54, 891 (2008).

    Article  Google Scholar 

  7. A. R. Shugurov, A. V. Panin, and M. S. Kazachenok, Tech. Phys. 55, 1583 (2010).

    Article  Google Scholar 

  8. A. S. Kuznetsov, M. A. Gleeson, and F. Bijkerk, J. Appl. Phys. 114, 113507 (2013).

    Article  Google Scholar 

  9. N. V. Nikonov, Molybdenum. Properties, Application, Manufacturing, Products (Metotekhnika, Moscow, 2014) [in Russian].

    Google Scholar 

  10. C.-G. Oertel, I. Hünsche, W. Skrotzki, et al., in Proc. 17th Plansee Seminar (Reutte, 2009), Vol. 1, p. RM 16/1.

  11. J. G. Che, C. T. Chan, W.-E. Jian, and T. C. Leung, Phys. Rev. B: Condens. Matter Mater. Phys. 57, 1875 (1998).

    Article  Google Scholar 

  12. S. Okuda and S. Imoto, Jpn. J. Appl. Phys. 19, 971 (1980).

    Article  Google Scholar 

  13. G.-N. Luo, K. Umstadter, W. M. Shu, et al., Nucl. Instrum. Methods Phys. Res., Sect. B. 267, 3041 (2009).

    Google Scholar 

  14. V. L. Bukhovets, A. E. Gorodetsky, R. Kh. Zalavutdinov, et al., Nucl. Mater. Energy 12, 458 (2017).

    Article  Google Scholar 

  15. A. E. Gorodetsky, R. Kh. Zalavutdinov, V. L. Bukhovets, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10, 1214 (2016).

    Article  Google Scholar 

  16. J. Li, M. Shimada, Y. Zhao, et al., J. Nucl. Mater. 415, 35 (2011).

    Article  Google Scholar 

  17. E. Carrasco, I. Tanarro, V. J. Herrero, and J. Cernicharo, Phys. Chem. Chem. Phys. 15, 1699 (2013).

    Article  Google Scholar 

  18. K. Oura, V. G. Lifshits, A. A. Saranin, et al., Surface Science: An Introduction (Springer, Berlin, 2003).

    Book  Google Scholar 

  19. I. Jauberteau, A. Bessaudou, R. Mayet, et al., Coatings 5, 656 (2015).

    Article  Google Scholar 

  20. B. G. Demczyk, J.-G. Choi, and L. T. Thompson, Appl. Surf. Sci. 78, 63 (1994).

    Article  Google Scholar 

  21. G. Ertle and N. Thiele, Appl. Surf. Sci. 3, 99 (1979).

    Article  Google Scholar 

  22. O. V. Ogorodnikova, K. Sugiyama, A. Markin, et al., Phys. Scr., T 145, 014034 (2011).

    Article  Google Scholar 

  23. R. D. Kolasinski, D. F. Cowgill, D. C. Donovan, et al., J. Nucl. Mater. 438, S1019 (2013).

    Article  Google Scholar 

  24. Y. Ueda, T. Shimada, and M. Nishikava, Nucl. Fusion 44, 62 (2004).

    Article  Google Scholar 

  25. S. Qin, J. Wang, L. Cheng, et al., Fusion Eng. Des. 129, 1 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

X-ray spectral microanalysis, as well as X-ray photoelectron and structural studies, was performed using equipment of the Joint Use Center of the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences. The work was supported in part by the Presidium of the Russian Academy of Sciences (program no. I.34P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Gorodetsky.

Additional information

Translated by S. Rodikov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorodetsky, A.E., Bukhovets, V.L., Zalavutdinov, R.K. et al. Blistering in Molybdenum Foils under Exposure to the Glow Discharge of D2‒N2 Mixtures. J. Surf. Investig. 12, 1052–1060 (2018). https://doi.org/10.1134/S1027451018050440

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451018050440

Keywords:

Navigation