Skip to main content
Log in

Influence of the Substrate Type on the Surface Morphology of Cu2ZnSnSe4 Thin Films

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Investigations into the influence of the substrate type (a glass substrate with a molybdenum sublayer, tantalum and molybdenum foils) on the surface morphology of Cu2ZnSnSe4 thin films obtained by selenization of electrochemically deposited and preliminary annealed metallic precursors are presented. Metal foils are attractive for use as substrates of solar cells in both ground and space objects due to their light weight, flexibility, and the possibility of using the commercial roll-to-roll technology of film fabrication, leading to a reduction in the cost. At different stages of Cu2ZnSnSe4 film preparation, their surface morphology is studied by atomic-force microscopy and scanning electron microscopy in combination with energy-dispersive spectrometry. The metal substrate morphology is demonstrated to have an insignificant effect on the surface morphology of Cu2ZnSnSe4 films, indicating that flexible-foil substrates are promising for the production of thin-film solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Semiconductor Materials for Solar Photovoltaic Cells Ed. by M. P. Paranthaman, W. Wong-Ng, and R. N. Bhattacharya, Vol. 218 of Springer Series in Material Science (Springer, 2016).

  2. M. A. Green, K. Emery, Y. Hishikawa, et al., Prog. Photovoltaics. 24, 905 (2016). doi 10.1002/pip.2788

    Article  Google Scholar 

  3. M. A. Green, Prog. Photovoltaics. 17, 347 (2009). doi 10.1002/pip.899

    Article  Google Scholar 

  4. P. D. Moskowitz and V. M. Fthenakis, Sol. Cells 29, 63 (1990).

    Article  Google Scholar 

  5. W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961). doi 10.1063/1.1736034

    Article  Google Scholar 

  6. J. Lee, S. C. Nam, and Y. Tak, Korean J. Chem. Eng. 22, 161 (2005). doi 10.1007/BF02701479

    Article  Google Scholar 

  7. L. Guo, Y. Zhu, O. Gunawan, et al., Prog. Photovoltaics. 22, 58 (2012). doi 10.1002/pip.2332

    Article  Google Scholar 

  8. M. Pagliaro, G. Palmisano, and R. Ciriminna, Flexible Solar Cells (Wiley, Weinheim, 2008).

    Book  Google Scholar 

  9. F. Kessler and D. Rudmann, Sol. Energy 77, 685 (2004). doi 10.1016/j.solener.2004.04.010

    Article  Google Scholar 

  10. A. V. Stanchik, S. A. Bashkirov, Y. S. Yakovenko, et al., Fiz. Obraz. VUZakh 22 (1), 106C (2016).

    Google Scholar 

  11. A. V. Stanchik, S. M. Barajshuk, S. A. Bashkirov, et al., Vestsi Nats. Akad. Nauk Belarusi., Ser. Fiz.-Mat. Nauk, No. 4, 67 (2016).

    Google Scholar 

  12. H. Chia-Ho and W. Dong-Cherng, Int. J. Photoenergy 2014, 568648 (2014). doi 10.1155/2014/568648

    Google Scholar 

  13. I. S. Tashlykov and S. M. Baraishuk, Russ. J. Non-Ferrous Met. 49, 303 (2008). doi 10.3103/S1067821208040172

    Article  Google Scholar 

  14. I. Tashlykov, S. Baraishuk, O. Mikkalkovich, and I. Antonovich, Przegl. Elektrotech. 84 (3), 111 (2008).

    Google Scholar 

  15. R. Kondrotas, A. Juskenas, A. Naujokaitis, et al., Sol. Energy Mater. Sol. Cells 132, 21 (2015). doi 10.1016/j.solmat.2014.08.010

    Article  Google Scholar 

  16. A. Redinger, K. Hönes, X. Fontané, et al., Appl. Phys. Lett. 98, 101907 (2011). doi 10.1063/1.3558706

    Article  Google Scholar 

  17. A. H. Pinto, S. W. Shin, E. S. Aydil, and R. L. Penn, Green Chem. 18, 5814 (2016). doi 10.1039/c6gc01287f

    Article  Google Scholar 

  18. C. Xue, D. Papadimitriou, Y. S. Raptis, et al., J. Appl. Phys. 96, 1963 (2004). doi 10.1063/1.1772885

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed in the context of scientific research according to the grant of the National Academy of Sciences of Belarus, by the State program of scientific studies “Physical Material Science, New Materials and Technologies” (МАТТЕХ 1.0.6), and was supported by the Belarusian Republican Foundation for Fundamental Research (project no. F17PM-089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Stanchik.

Additional information

Translated by S. Rodikov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baraishuk, S.M., Tkachenko, T.M., Stanchik, A.V. et al. Influence of the Substrate Type on the Surface Morphology of Cu2ZnSnSe4 Thin Films. J. Surf. Investig. 12, 1077–1081 (2018). https://doi.org/10.1134/S1027451018050415

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451018050415

Keywords:

Navigation