Skip to main content
Log in

Multipopulation Genetic Algorithm for Determining Crystal Structures Using Powder Diffraction Data

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A method for the automatic determination of crystal structures using powder diffraction data by the multipopulation genetic algorithm is proposed. The advantage of using coevolution with exchange by better individuals over using evolution within a single genetic algorithm without interpopulation exchange is demonstrated. The process of searching for a structural solution using the multipopulation genetic algorithm is illustrated and analyzed by the example of the known Ca2Al3O6F crystal structure (sp. gr. R3̄, a = 17.3237(1) Å, c = 7.0002(0) Å, Z = 6, and V = 1819.38(1) Å3). The fitness functions for the best structural models and atomic position maps at different algorithm operation stages are plotted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. M. Kariuki, D. M. S. Zin, M. Tremayne, and K. D. M. Harris, Chem. Mater. 8, 565 (1996).

    Article  Google Scholar 

  2. M. Tremayne, B. M. Kariuki, K. D. M. Harris, et al., J. Appl. Crystallogr. 30, 968 (1997).

    Article  Google Scholar 

  3. B. M. Kariuki, H. Serrano-González, R. L. Johnston, and K. D. M. Harris, Chem. Phys. Lett. 280, 189 (1997).

    Article  Google Scholar 

  4. K. Shankland, W. I. F. David, and T. Csoka, Z. Kristallogr. 212, 550 (1997).

    Google Scholar 

  5. W. I. F. David, K. Shankland, and N. Shankland, Chem. Commun. 8, 931 (1998).

    Article  Google Scholar 

  6. Y. G. Andreev and P. G. Brace, J. Chem. Soc., Dalton Trans. 24, 4071 (1998).

    Article  Google Scholar 

  7. V. Favre-Nicolin and R. Cerny, J. Appl. Crystallogr. 35, 734 (2002).

    Article  Google Scholar 

  8. W. I. F. David, K. Shankland, J. Van de Streek, et al., J. Appl. Crystallogr. 39, 910 (2006).

    Article  Google Scholar 

  9. P. S. Whitfield, I. J. Davidson, L. D. Mitchell, et al., Mater. Sci. Forum 651, 11 (2010).

    Article  Google Scholar 

  10. K. D. M. Harris, R. L. Johnston, and B. M. Kariuki, Acta Crystallogr., Sect. A: Found. Crystallogr. 54, 632 (1998).

    Article  Google Scholar 

  11. Z. J. Feng and C. Dong, J. Appl. Crystallogr. 40, 583 (2007).

    Article  Google Scholar 

  12. L. Lutterotti and M. Bortolotti, IUCr Compcomm Newsl. 1, 43 (2003).

    Google Scholar 

  13. A. Le Bail and L. M. D. Cranswick, Powder Diffr. 24 (3), 254 (2009).

    Article  Google Scholar 

  14. K. Shankland, M. J. Spillman, and E. A. Kabova, Acta Crystallogr. 69, 1251 (2013).

    Google Scholar 

  15. V. Favre-Nicolin. http://fox.vincefn.net/Manual/Fox.Grid.

  16. T. A. N. Griffin, K. Shankland, J. Van de Streek, and J. Cole, J. Appl. Crystallogr. 42, 356 (2009).

    Article  Google Scholar 

  17. T. A. N. Griffin, K. Shankland, J. Van de Streek, and J. Cole, J. Appl. Crystallogr. 42, 360 (2009).

    Article  Google Scholar 

  18. B. Meredig and C. Wolverton, Nat. Mater. 12, 123 (2013).

    Article  Google Scholar 

  19. L. Falahiazar, M. Teshnehlab, and A. Falahiazar, in Proc. Int. Conference on Recent Advances in Computing and Software Systems (Kalavakkam, Chennai, 2012), p.37.

    Google Scholar 

  20. J. Nalepa and M. Blocho, Int. J. Parallel Program. 43, 1 (2014).

    Google Scholar 

  21. S. Habershon, K. D. M. Harris, and R. L. Johnston, J. Comput. Chem. 24, 1766 (2003).

    Article  Google Scholar 

  22. D. Albesa-Jové, B. M. Kariuki, S. J. Kitchin, et al., ChemPhysChem 5, 414 (2004).

    Article  Google Scholar 

  23. A. N. Zaloga, C. V. Burakov, E. S. Semenkin, and I. S. Yakimov, Zh. Sib. Fed. Univ., Khim. 7 (4), 573 (2014).

    Google Scholar 

  24. A. N. Zaloga, S. V. Burakov, E. S. Semenkin, and I. S. Yakimov, Cryst. Res. Technol. 50 (9–10), 724 (2015).

    Article  Google Scholar 

  25. A. N. Zaloga, P. S. Dubinin, S. D. Kirik, et al., Zh. Sib. Fed. Univ., Tech. Technol., No. 9, 105 (2016).

    Article  Google Scholar 

  26. Z. Xia, M. S. Molokeev, and A. S. Oreshonkov, Phys. Chem. Chem. Phys. 16, 5952 (2014).

    Article  Google Scholar 

  27. Ya. I. Yakimov, S. D. Kirik, E. S. Semenkin, et al., Zh. Sib. Fed. Univ., Khim. 6 (2), 180 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Zaloga.

Additional information

Original Russian Text © A.N. Zaloga, I.S. Yakimov, P.S. Dubinin, 2018, published in Poverkhnost’, 2018, No. 2, pp. 39–45.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaloga, A.N., Yakimov, I.S. & Dubinin, P.S. Multipopulation Genetic Algorithm for Determining Crystal Structures Using Powder Diffraction Data. J. Surf. Investig. 12, 128–134 (2018). https://doi.org/10.1134/S1027451018010342

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451018010342

Keywords

Navigation