Skip to main content
Log in

Investigation of Ceramic-Like Coatings Formed on Aluminum Composites by Microarc Oxidation

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Ceramic-like coatings with a thickness of up to 40 μm are formed on aluminum composites without additives and with copper additives (1 and 4.5%) in a silicate-alkaline electrolyte by microarc oxidation. The composites are prepared by powder metallurgy (cold pressing and sintering in forevacuum). An increase in the copper concentration in the composites to 4.5% leads to the retardation of anode voltage growth on the initial stage of oxidation corresponding to the formation of a barrier layer. The coatings are studied by scanning electron microscopy, X-ray microanalysis, X-ray photoelectron spectroscopy, and X-ray diffraction. The morphology of their surface corresponds to the morphology of the surface of coatings on compact aluminum alloys. According to X-ray photoelectron spectroscopy, a thin 1-μm layer forms on the surface. It consists predominantly of electrolyte components. X-ray diffraction analysis shows that the coatings mainly consist of γ-Al2O3 oxide as well as the η-Al2O3 phase, the peaks of which are broadened. This broadening is characteristic of the amorphous component and may be due to the presence of nanocrystalline regions in the coating structure. In the coatings on the composite Al + 4.5% Cu, mullite Al2SiO5 and copper oxide CuO are also found. The excess aluminum content may be associated with residual unoxidized aluminum inclusions in the structure of the coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. O. Bodunrin, K. K. Alaneme, and L. H. Chown, J. Mater. Res. Technol. 4 (4), 434 (2015). doi 10.1016/j.jmrt.2015.05.003

    Article  Google Scholar 

  2. M. K. Surappa, Sadhana 28 (1), 319 (2003).

    Article  Google Scholar 

  3. L. E. Agureev, V. I. Kostikov, Zh. V. Eremeeva, and S. V. Savushkina, Tekhnol. Legk. Splavov, No. 3, 59 (2014).

    Google Scholar 

  4. Y. C. Kang and S. L.-I. Chan, Mater. Chem. Phys. 85, 438 (2004). doi 10.1016/j.matchemphys.2004.02.002

    Article  Google Scholar 

  5. Z. Y. Ma, S. C. Tjong, Y. L. Li, and Y. Liang, Mater. Sci. Eng., A 225, 125 (1997). doi 10.1016/S0921-5093(96)10870-4

    Article  Google Scholar 

  6. I. V. Suminov, P. N. Belkin, A. V. Apelfeld, V. B. Lyudin, B. L. Krit, and A. M. Borisov, Plasma and Electrolytic Modification for Metal and Alloy Surfaces (Tekhnosfera, Moscow, 2011), Vol. 2 [in Russian].

  7. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, Surf. Coat. Technol. 122, 73 (1999).

    Article  Google Scholar 

  8. X. Nie, E. I. Meletis, J. C. Jiang, A. Leyland, A. L. Yerokhin, and A. Matthews, Surf. Coat. Technol. 149, 245 (2002).

    Article  Google Scholar 

  9. J. A. Curran and T. W. Clyne, Surf. Coat. Technol. 199, 168 (2005). doi 10.1016/j.surfcoat.2004.09.037

    Article  Google Scholar 

  10. V. Dehnavi, D. W. Shoesmith, B. L. Luan, M. Yari, X. Y. Liu, and S. Rohani, Mater. Chem. Phys. 161, 49 (2015). doi 10.1016/j.matchemphys.2015.04.058

    Article  Google Scholar 

  11. L. N. Lesnevskiy, M. A. Lyakhovetskiy, and S. V. Savushkina, J. Frict. Wear 37 (3), 268 (2016). doi 10.3103/S1068366616030107

    Article  Google Scholar 

  12. K. Wang, Y. J. Kim, Y. Hayashi, C. G. Lee, and B. H. Koo, J. Ceram. Process. Res. 10 (4), 562 (2009).

    Google Scholar 

  13. C. Liu, P. Liu, Z. Huang, Q. Yan, R. Guo, D. Li, G. Jiang, and D. Shen, Surf. Coat. Technol. 286, 223 (2016). doi 10.1016/j.surfcoat.2015.12.040

    Article  Google Scholar 

  14. E. A. Romanovskii, O. V. Bespalova, A. M. Borisov, O.N. Dunkin, V. S. Kulikauskas, V. G. Sukharev, I. V. Suminov, and A. V. Apelfeld, Poverkhnost, Nos. 5–6, 106 (1999).

    Google Scholar 

  15. E. Matykina, R. Arrabal, A. Mohamed, P. Skeldon, and G. E. Thompson, Corros. Sci. 51, 2897 (2009). doi 10.1016/j.corsci.2009.08.004

    Article  Google Scholar 

  16. V. Dehnavi, X. Y. Liu, B. L. Luan, D. W. Shoesmith, and S. Rohani, Surf. Coat. Technol. 251, 106 (2014). doi 10.1016/j.surfcoat.2014.04.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Savushkina.

Additional information

Original Russian Text © S.V. Savushkina, L.E. Agureev, A.A. Ashmarin, B.S. Ivanov, A.V. Apelfeld, A.V. Vinogradov, 2017, published in Poverkhnost’, 2017, No. 12, pp. 34–39.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savushkina, S.V., Agureev, L.E., Ashmarin, A.A. et al. Investigation of Ceramic-Like Coatings Formed on Aluminum Composites by Microarc Oxidation. J. Surf. Investig. 11, 1154–1158 (2017). https://doi.org/10.1134/S1027451017060325

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451017060325

Keywords

Navigation