Skip to main content
Log in

Effect of gamma radiation on the surface and bulk properties of poly(tetrafluoroethylene)

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The effect of gamma radiation on the contact angle θ, the work of adhesion γ SL for polar and nonpolar liquids, disperse and polar components of the surface energy γ S , the magnitude of bulk dielectric polarization P 0, and the dielectric increment Δε for sintered and non-sintered poly(tetrafluoroethylene) (PTFE) of suspension polymerization are studied. Sintered PTFE exhibits anomalously high growth of the studied parameters with an absorbed dose up to 500 kGy: Δε by more than four orders of magnitude, the work of adhesion of the polar liquid \(\gamma _{SL}^{{H_2}O}\) by a factor of 1.5, the polar component of the surface energy γpol S by 20 times. The observed changes are found to be considerably larger than those expected from the viewpoint of the amplification of dipole–dipole and donor–acceptor molecular interactions with the participation of polar groups formed in poly(tetrafluoroethylene) upon irradiation. The similar behavior of Δε, \(\gamma _{SL}^{{H_2}O}\), and γpol S parameters depending on the exposed dose and subsequent annealing of the samples at 150°C is revealed. A unified mechanism for changes in the bulk polarization and surface properties caused by the formation in poly(tetrafluoroethylene) of long-lived electron–hole pairs is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Dahm and D. M. Brewis, Rapra Review Report 183: Adhesion to Fluoropolymers (Smithers Rapra Press, 2005).

    Google Scholar 

  2. V. M. Buznik, Aviats. Mater. Tekhnol., No. 1, 29 (2013).

    Google Scholar 

  3. J. T. Fields and A. Garton, Polym. Compos. 17 (2), 242 (1996).

    Article  Google Scholar 

  4. D. L. Burris, S. Zhao, R. Duncan, et al., Wear 267, 653 (2009).

    Article  Google Scholar 

  5. V. A. Shelestova, O. R. Yurkevich, and P. N. Grakovich, Polym. Sci., Ser. B 44 (3–4), 94 (2002).

    Google Scholar 

  6. V. A. Shelestova, P. N. Grakovich, S. G. Danchenko, and V. A. Smirnov, Khim. Neftegazov. Mashinostr., No. 11, 39 (2006).

    Google Scholar 

  7. A. Shojaei and S. Gholamalipour, Macromol. Res. 19 (6), 613 (2011).

    Article  Google Scholar 

  8. D. Lehmann, B. Hupfer, U. Lappan, et al., Des. Monomers Polym. 5 (2), 317 (2002).

    Article  Google Scholar 

  9. G. Pompe, L. Häußler, G. Adam, et al., Appl. Polym. Sci. 98, 1317 (2005).

    Article  Google Scholar 

  10. M. Khan, R. Sohail, U. Franke, et al., Wear 266, 175 (2009).

    Article  Google Scholar 

  11. M. Khan, D. Lehmann, and G. Heinrich, eXPRESS Polym. Lett. 2 (4), 284 (2008).

    Article  Google Scholar 

  12. K. Lunkwitz, W. Bürger, U. Geißler, et al., Appl. Polym. Sci. 60, 2017 (1996).

    Article  Google Scholar 

  13. W. Burger, K. Lunkwitz, G. Pompe, et al., Appl. Polym. Sci. 48, 1973 (1993).

    Article  Google Scholar 

  14. U. Lappan, G. Pompe, and K. Lunkwitz, Appl. Polym. Sci. 66, 2287 (1997).

    Article  Google Scholar 

  15. K. Schierholz, U. Lappan, and K. Lunkwitz, Nucl. Instrum. Methods Phys. Res., Sect. B 151, 232 (1999).

    Article  Google Scholar 

  16. S. A. Khatipov, S. A. Serov, N. V. Sadovskaya, and E. M. Konova, Polym. Sci., Ser. A 54 (9), 684 (2012).

    Article  Google Scholar 

  17. H. W. Fox and W. A. Zisman, J. Colloid Sci. 5 (6), 514 (1950).

    Article  Google Scholar 

  18. B. D. Summ and Yu. V. Goryunov, Physical and Chemical Foundations of Wetting and Spreading (Khimiya, Moscow, 1976) [in Russian].

    Google Scholar 

  19. B. I. Sazhin, Electrical Properties of Polymers (Khimiya, Leningrad, 1986) [in Russian].

    Google Scholar 

  20. Yu. G. Bogdanova, Adhesion and its Role for Securing Polymer Composites’ Strength (Moscow State Univ., Moscow, 2010) [in Russian].

    Google Scholar 

  21. D. K. Owens and R. C. Wendt, Appl. Polym. Sci. 13, 1741 (1969).

    Article  Google Scholar 

  22. C. J. Van Oss, M. K. Chaudhury, and R. Good, Chem. Rev. 88, 927 (1988).

    Article  Google Scholar 

  23. U. Lappan, B. Fuchs, U. Geißler, et al., Polymer 43, 4325 (2002).

    Article  Google Scholar 

  24. V. K. Milinchuk, E. R. Klinshpont, and S. Ya, Pshezhetskii, Macroradicals (Khimiya, Moscow, 1980) [in Russian].

    Google Scholar 

  25. S. A. Khatipov, High Energy Chem. 35 (5), 291 (2001).

    Article  Google Scholar 

  26. S. A. Khatipov, Yu. R. Zhutayeva, N. A. Smirnova, and V. P. Sichkar, Nucl. Instrum. Methods Phys. Res., Sect. B 151, 324 (1999).

    Article  Google Scholar 

  27. S. A. Khatipov, Yu. R. Zhutaeva, and V. P. Sichkar’, Polym. Sci., Ser. B 40 (11–12), 407 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Obvintsev.

Additional information

Original Russian Text © A.Yu. Obvintsev, N.V. Sadovskaya, S.A. Khatipov, V.M. Buznik, 2017, published in Poverkhnost’, 2017, No. 9, pp. 52–60.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obvintsev, A.Y., Sadovskaya, N.V., Khatipov, S.A. et al. Effect of gamma radiation on the surface and bulk properties of poly(tetrafluoroethylene). J. Surf. Investig. 11, 948–954 (2017). https://doi.org/10.1134/S1027451017050123

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451017050123

Keywords

Navigation