Skip to main content
Log in

Influence of type of bonds in compounds on the mechanism of the sputtered excited particles formation under ion bombardment

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A review of studies of the radiation of the excited particles ejected from metals and its chemical compounds under ion bombardment are presented. The observed features of ion-photon emission (IPE) are analyzed taking into account the physical-chemical parameters of solids and spectroscopic parameters of ejected excited particles. Different mechanisms of the ejected excited particles formation for the explanation of the experimental data are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Gritsyna, Radiotekh. Electron. 26, 1969 (1981).

    Google Scholar 

  2. S. S. Pop, S. F. Belykh, V. G. Drobnich, and V. Ch. Ferleger, Ion–Photon Emission from Metals (FAN, Tashkent, 1989) [in Russian].

    Google Scholar 

  3. N. V. Pleshivtsev and A. I. Bazhin, Physics of the Interaction of Ion Beams with Materials (Vuzovskaya Kniga, Moscow, 1998) [in Russian].

    Google Scholar 

  4. H. H. Andersen and H. L. Bay, in Sputtering by Particle Bombardment I, Ed. by R. Behrisch (Springer, Berlin, 1981).

  5. M. Suchanska, Prog. Surf. Sci. 54, 165 (1997).

    Article  Google Scholar 

  6. V. V. Gritsyna, A. G. Koval’, V. T. Koppe, and S. P. Gokov, Opt. Spektrosk. 78, 212 (1995).

    Google Scholar 

  7. M. J. Pelling, R. B. Wright, and D. M. Gruen, J. Chem. Phys. 74, 6448 (1981).

    Article  Google Scholar 

  8. N. Winograd, J. P. Baxter, and F. M. Kimock, Chem. Phys. Lett. 88, 581 (1982).

    Article  Google Scholar 

  9. N. Andersen, B. Andersen, and E. Veje, Radiat. Eff. Defects Solids 60, 119 (1982).

    Article  Google Scholar 

  10. V. V. Gritsyna, Poverhnost,’ No. 8, 62 (1982).

    Google Scholar 

  11. V. V. Gritsyna, T. S. Kiyan, R. Gutt, et al., Izv. Akad. Nauk SSSR, Ser. Fiz. 3, 578 (1971).

    Google Scholar 

  12. R. J. McDonald and P. J. Martin, Surf. Sci. 67, 237 (1977).

    Article  Google Scholar 

  13. Yu. V. Slyusarenko, A. Yu. Sobolev, A. G. Koval’, V. G. Koppe, Opt. Spectrosk. 62, 289 (1987).

    Google Scholar 

  14. Yu. I. Kovtunenko, A. G. Koval’, A. Yu. Sobolev, Yu. V. Slyusarenro, Opt. Spectrosk. 66, 591 (1989).

    Google Scholar 

  15. G. N. Polyakova, O. A. Opalev, and A. I. Ranyuk, Poverhnosnt’, No. 8, 72 (1982).

    Google Scholar 

  16. V. G. Drobnich, V. A. Mastyugin, and S. S. Pop, Nucl. Instrum. Methods Phys. Res., Sect. B 58, 443 (1991).

    Article  Google Scholar 

  17. V. G. Drobnich, V. A. Mastyugin, and S. S. Pop, Izv. Akad. Nauk SSSR, Ser. Fiz. 55, 2393 (1991).

    Google Scholar 

  18. M. J. Pellin, R. B. Wright, and D. M. Gruen, J. Chem. Phys. 7, 6448 (1981).

    Article  Google Scholar 

  19. M. L. Yu, D. Grishkowsky, and A. C. Balant, Phys. Rev. Lett. 48, 427 (1982).

    Article  Google Scholar 

  20. V. G. Drobnich, V. A. Mastyugin, I. I. Peshak, and S. S. Pop, Poverhnosnt’, No. 5, 43 (1989).

    Google Scholar 

  21. V. G. Drobnich, V. A. Mastyugin, I. I. Peshak, and S. S. Pop, USSR Inventor’s Cerificate no. 1491317 (1989).

    Google Scholar 

  22. V. A. Abramenko, D. V. Ledyakin, I. F. Urazgildin, and V. E. Yurasova, JETP Lett. 44, 398 (1987).

    Google Scholar 

  23. P. Sigmund, Phys. Rev. 184, 383 (1969).

    Article  Google Scholar 

  24. R. Kelly, Phys. Rev. A 25, 700 (1982).

    Article  Google Scholar 

  25. R. Kelly, Nucl. Instrum. Methods Phys. Res., Sect. B 209–210, 508 (1983).

  26. S. V. Teplov and V. P. Shestov, Izv. Vyssh. Uchebn. Zaved., Fiz. 28, 9 (1985).

    Google Scholar 

  27. J. M. Schroeer, T. N. Rhodin, and R. C. Bradly, Surf. Sci. 34, 571 (1973).

    Article  Google Scholar 

  28. E. Veje, Surf. Sci. 110, 533 (1981).

    Article  Google Scholar 

  29. S. A. Evdokimov, S. S. Pop, V. G. Drobnich, and I. P. Zapesochniy, JETP Lett. 22, 1027 (1975).

    Google Scholar 

  30. J. M. Schroeer, Surf. Sci. 35, 485 (1973).

    Article  Google Scholar 

  31. P. Joyes, J. Phys. 30, 243 (1969).

    Article  Google Scholar 

  32. R. Hippler, W. Kruger, and A. Scharmann, Nucl. Instrum. Methods 132, 439 (1976).

    Article  Google Scholar 

  33. V. A. Pozdzersky and B. A. Tsipinyuk, Vacuum 32, 723 (1982).

    Article  Google Scholar 

  34. H. D. Hugstrum, Science 178, 275 (1972).

    Article  Google Scholar 

  35. V. V. Bobkov, S. P. Gokov, V. V. Gritsyna, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 256, 501 (2007).

    Article  Google Scholar 

  36. K. Motohashi, K. Nogami, Ya. Sakai, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 283, 59 (2012).

    Article  Google Scholar 

  37. T. S. Kijan, V. V. Gritsyna, and Ya. M. Fogel, Nucl. Instrum. Methods 132, 415 (1976).

    Article  Google Scholar 

  38. A. Goehlich, N. Niemoller, and H. F. Dobele, J. Nucl. Mater. 266–269, 501 (1999).

    Article  Google Scholar 

  39. A. Qayyum, M. N. Akhtar, and T. Riffat, Radiat. Phys. Chem. 72, 663 (2005).

    Article  Google Scholar 

  40. V. V. Gritsyna, A. G. Koval’, S. P. Gokov S.P., and D. I. Shevchenko, Ukr. Fiz. Zh. 45, 265 (2000).

    Google Scholar 

  41. V. E. Yurasova and L. F. Urazgildin, Radiat. Eff. Defects Solids 117, 99 (1991).

    Article  Google Scholar 

  42. G. Dubskiy, V. Neudachin, N. Persiantseva, et al., Poverkhnost’, No. 1, 64 (1985).

    Google Scholar 

  43. I. S. Sharodi, Yu. A. Bandurin, and S. S. Pop, Nucl. Instrum. Methods Phys. Res., Sect. B 193, 699 (2002).

    Article  Google Scholar 

  44. B. I. Craig, J. P. Baxter, G. A. Schick, et al., Phys. Rev. Lett. 57, 1351 (1986).

    Article  Google Scholar 

  45. W. Berthold and A. Wucher, Phys. Rev. Lett. 76, 2181 (1996).

    Article  Google Scholar 

  46. W. Berthold and A. Wucher, Phys. Rev. B: Condens. Matter Mater. Phys. 56, 4251 (1997).

    Article  Google Scholar 

  47. Z. Sroubek, F. Sroubek, A. Wucher, and J. A. Yarmoff, Phys. Rev. B: Condens. Matter Mater. Phys. 68, 115426 (2003).

    Article  Google Scholar 

  48. S. N. Morozov and E. K. Vasil’eva, Opt. Spectrosc. 89 (6), 826 (2000).

    Article  Google Scholar 

  49. J. M. Ziman, Principles of the Theory of Solids (Cambridge Univ. Press, London, 1972).

    Book  Google Scholar 

  50. J. Callaway, Energy Band Theory (Academic Press, New York, 1964).

    Google Scholar 

  51. V. V. Nemoshkalenko and V. N. Antonov, Methods of Computational Physics in the Theory of Solids (Band Theory of Metals) (Naukova Dumka, Kiev, 1985).

    Google Scholar 

  52. B. J. Garrison, N. Winograd, R. Chatterjee, et al., Rapid Commun. Mass. Spectrom 12, 1266 (1998).

    Article  Google Scholar 

  53. V. V. Gritsyna, A. G. Koval’, S. P. Gokov, and D. I. Shevchenko, Opt. Spectrosc. 96, 444 (2004).

    Article  Google Scholar 

  54. M. L. Yu, Nucl. Instrum. Methods Phys. Res., Sect. B 18, 542 (1987).

    Article  Google Scholar 

  55. V. V. Gritsyna, A. G. Koval’, and D. A. Kleopov, Izv. Ross. Akad. Nauk, Ser. Fiz. 58, 35 (1994).

    Google Scholar 

  56. R. Kelly, Nucl. Instrum. Methods 194, 583 (1982).

    Article  Google Scholar 

  57. B. M. Fizgeer, V. I. Vlasyuk, and V. A. Litvinov, Izv. Akad. Nauk SSSR, Ser. Fiz. 55, 2459 (1991).

    Google Scholar 

  58. A. G. Koval’, Yu. E. Logatchev, T. S. Kijan, and L. V. Kotchergina, Opt. Spectrosk. 77, 798 (1994).

    Google Scholar 

  59. R. T. Poole, J. G. Jenkin, J. Liesegand, and C. G. Lecky, Phys. Rev. B: Solid State 11, 5179 (1975).

    Article  Google Scholar 

  60. S. A. Nemnonov, Fiz. Met. Metalloved 19, 550 (1965).

    Google Scholar 

  61. J. Friedel, Can. J. Phys. 34, 1109 (1956).

    Article  Google Scholar 

  62. G. M. Stocks, R. W. Williams, and J. S. Faulkner, Phys. Rev. B: Condens. Matter Mater. Phys. 4, 4390 (1971).

    Article  Google Scholar 

  63. D. I. Shevchenko, S. P. Gokov, T. M. Slyusarenko, et al., Izv. Ross. Akad. Nauk, Ser. Fiz. 66, 98 (2002).

    Google Scholar 

  64. M. Ait El Fqih and A. Kaddouri, Arm. J. Phys. 4, 103 (2011).

    Google Scholar 

  65. B. Hammer and J. K. Norskov, Adv. Catal. 45, 71 (2000).

    Google Scholar 

  66. A. E. Vol, Handbook of Binary Metallic Systems: Structure and Properties (Gos. Izd. Fiz.-Mat. Liter., Moscow, 1959; IPST, Jerusalem, 1962).

    Google Scholar 

  67. I. A. Afanas’eva, V. V. Bobkov, S. P. Gokov, et al., Vacuum 84, 1011 (2010).

    Article  Google Scholar 

  68. V. E. Yurasova, Vacuum 36, 609 (1986).

    Article  Google Scholar 

  69. V. T. Gritsyna, V. V. Bobkov, S. P. Gokov, et al., Vacuum 82, 888 (2008).

    Article  Google Scholar 

  70. G. Marletta, F. Iacona, and R. Kelly, Nucl. Instrum. Methods Phys. Res., Sect. B 65, 97 (1992).

    Article  Google Scholar 

  71. V. T. Gritsyna, N. A. Kasatkina, and V. F. Pershin, Nucl. Instrum. Methods Phys. Res., Sect. B 127–128, 612 (1997).

    Article  Google Scholar 

  72. V. V. Bobkov, S. P. Gokov, V. V. Gritsyna, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 218, 46 (2004).

    Article  Google Scholar 

  73. Y.-N. Xu and W. Y. Ching, Phys. Rev. B: Condens. Matter Mater. Phys. 43, 4461 (1991).

    Article  Google Scholar 

  74. V. V. Bobkov, I. A. Afanas’eva, V. V. Gritsyna, et al., Vacuum 86, 1624 (2012).

    Article  Google Scholar 

  75. N. A. Azarenkov, I. A. Afanas’eva, V. V. Bobkov, et al., Vacuum 105, 91 (2014).

    Article  Google Scholar 

  76. Y.-N. Xu and W. Y. Ching, Phys. Rev. B: Condens. Matter Mater. Phys. 59, 10530 (1999).

    Article  Google Scholar 

  77. Y.-N. Xu, Z.-Q. Gu, and W. Y. Ching, J Appl. Phys. 87, 4867 (2000).

    Article  Google Scholar 

  78. A. H. Dogar and A. Qayyum, Nucl. Instrum. Methods Phys. Res., Sect. B 247, 290 (2006).

    Article  Google Scholar 

  79. A. H. Dogar, S. Ullan, S. Hussain, and A. Qayyum, Appl. Surf. Sci. 255, 3235 (2008).

    Article  Google Scholar 

  80. K. Motohashi, Y. Saitoh, and S. Kitazawa, Appl. Surf. Sci. 257, 5782 (2011).

    Article  Google Scholar 

  81. P. Karmakar, P. Agarwal, and D. Chose, Appl. Surf. Sci. 178, 83 (2001).

    Article  Google Scholar 

  82. V. V. Gritsyna, A. G. Koval’, S. P. Gokov, and D. I. Shevchenko, Izv. Ross. Akad. Nauk, Ser. Fiz. 64, 560 (2000).

    Google Scholar 

  83. J. D. Woosley, C. Wood, E. Sonder, and B. A. Weers, Phys. Rev. B: Condens. Matter Mater. Phys. 22, 1065 (1980).

    Article  Google Scholar 

  84. M. Ait El Fqih, A. Boujlaidi, R. Jourdani, and A. Kaddouri, Eur. Phys. J. D 63, 97 (2011).

    Article  Google Scholar 

  85. K. Hammoum, A. T. El, A. Hahboune, et al., Eur. Phys. J. D 61, 469 (2011).

    Article  Google Scholar 

  86. C. R. Brundle, E. Silverman, and R. J. Madix, J. Vac. Sci. Technol. 16, 474 (1979).

    Article  Google Scholar 

  87. V. Bandourko, T. T. Lay, Y. Takeda, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 175–178, 68 (2001).

    Article  Google Scholar 

  88. V. Bandourko, N. Umeda, and N. Kishimoto, Nucl. Instrum. Methods Phys. Res., Sect. B 190, 146 (2002).

    Article  Google Scholar 

  89. H. S. Ousmane, T. Elasri, E. Ech-chamikh, et al., Int. J. Condens. Mater. 12, 284 (2010).

    Google Scholar 

  90. V. V. Gritsyna, A. G. Koval’, S. P. Gokov, and D. I. Shevchenko, Ukr. Fiz. Zh. 45, 265 (2000).

    Google Scholar 

  91. V. V. Gritsyna, A. G. Koval’, S. P. Gokov, and D. I. Shevchenko, Dopov. Akad. Nauk Fiz. 5, 83 (1999).

    Google Scholar 

  92. V. V. Vasiljev, V. S. Voitsenja, and V. D. Sarana, Plasma Phys. 16, 531 (1990).

    Google Scholar 

  93. V. V. Gritsyna, S. P. Gokov, and D. I. Shevchenko, Proc. Kharkiv. Nats. Univ., Ser. Fiz. (Nuclei, Particles, Fields) 569, 88 (2002).

    Google Scholar 

  94. V. A. Litvinov and B. M. Fizgeer, Izv. Akad. Nauk SSSR, Ser. Fiz. 49, 1816 (1985).

    Google Scholar 

  95. K. P. Huber and G. Herzberg, Constants of Diatomic Molecules (Litton Educational Publ., Ottawa, 1979).

    Book  Google Scholar 

  96. M. Ait El Fqih and P. G. Fournier, Acta Phys. Pol. A 115, 849 (2009).

    Article  Google Scholar 

  97. M. Ait El Fqih and P. G. Fournier, Nucl. Instrum. Methods Phys. Res., Sect. B 267, 1206 (2009).

    Article  Google Scholar 

  98. M. Ait El Fqih, Arm. J. Phys. 3, 292 (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Afanasieva.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobkov, V.V., Gritsyna, V.V., Gritsyna, V.T. et al. Influence of type of bonds in compounds on the mechanism of the sputtered excited particles formation under ion bombardment. J. Surf. Investig. 10, 1239–1265 (2016). https://doi.org/10.1134/S1027451016050694

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451016050694

Keywords

Navigation