Skip to main content
Log in

Abstract

New optimization criteria for a class of instruments, neutron reflectometers, are established by analysis of the reflectivity measurements. Luminosity of the reflectometer is defined as the neutron flux incident onto the sample surface on conditions that the measurement is made with a given momentum transfer resolution. The correct choice of the working wavelength and realization of measurements with optimum parameters of the neutron beam increase luminosity in several times. Standard schemes for the reflectivity measurements with monochromatic and white beams are considered. Optimization of the reflectivity measurements generally requires numerical calculations. Analytically, its potential is demonstrated by considering thermalized neutron beams. Such innovations as neutron-optical velocity selector, small-angle Soller collimators with traps for neutrons reflected from the channel walls and neutron fan beam time-of-flight technique are proposed to further increase the luminosity of reflectometers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Uppsala Universitet, Institutionen för fysik och astronomi. Ed. by A. R. Rennie (2015). http://material.fysik.uu.se/Group_members/adrian/reflect.htm

  2. V. O. de Haan, J. de Blois, P. van der Ende, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 362, 434 (1995).

    Article  Google Scholar 

  3. A. A. van Well and H. Fredrikze, Phys. B 357, 204 (2005).

    Article  Google Scholar 

  4. T. Hils, P. Boeni, and J. Stahn, Phys. B 350, 166 (2004).

    Article  Google Scholar 

  5. J. Stahn, U. Filges, and T. Panzner, Eur. Phys. J. Appl. Phys 58, 11001 (2012).

    Article  Google Scholar 

  6. A. A. van Well, Phys. B 180–181, 959 (1992).

    Article  Google Scholar 

  7. A. A. van Well, V. O. de Haan, H. Fredrikze, and D. Clemens, Phys. B 283, 282 (2000).

    Article  Google Scholar 

  8. R. Cubitt and G. Fragneto, Appl. Phys. A 74, 329 (2002).

    Article  Google Scholar 

  9. R. A. Campbell, H. P. Wacklin, I. Sutton, et al., Eur. Phys. J. Plus 126, 107 (2011).

    Article  Google Scholar 

  10. M. James, A. Nelson, S. A. Holt, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 632, 112 (2011).

    Article  Google Scholar 

  11. R. Cubitt, Nucl. Instrum. Methods Phys. Res., Sect. A 558, 547 (2006).

    Article  Google Scholar 

  12. F. Ott, Nucl. Instrum. Methods Phys. Res., Sect. A 584, 401 (2008).

    Article  Google Scholar 

  13. F. Ott and A. Menelle, Eur. Phys. J. Special Topics 167, 93 (2009).

    Article  Google Scholar 

  14. F. Ott and A. Menelle, Nucl. Instrum. Methods Phys. Res., Sect. A 586, 23 (2008).

    Article  Google Scholar 

  15. F. Ott and A. Menelle, Phys. B 385–386, 985 (2006).

    Article  Google Scholar 

  16. F. Cousin, F. Ott, F. Gibert, and A. Menelle, Eur. Phys. J. Plus 126, 109 (2011).

    Article  Google Scholar 

  17. J. Stahn, T. Panzner, U. Filges, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 634, 12 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Pleshanov.

Additional information

Original Russian Text © N.K. Pleshanov, 2016, published in Poverkhnost’, 2016, No. 8, pp. 20–32.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pleshanov, N.K. Optimization of measurements at neutron reflectometers. J. Surf. Investig. 10, 790–801 (2016). https://doi.org/10.1134/S1027451016040340

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451016040340

Keywords

Navigation