Skip to main content
Log in

Peculiarities of the initial stage of growth of niobium-based nanostructures on a Si(111)-7 × 7 surface

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The initial stage of growth of nanoislands prepared by thermal deposition of niobium on the reconstructed surface of Si(111)-7 × 7 in ultrahigh vacuum is experimentally investigated. The morphological and electrophysical properties of niobium-based nanostructures are studied by means of low-temperature scanning tunneling microscopy and spectroscopy. It is found that upon the deposition of niobium on a substrate at room temperature, clusters and nanoislands are formed on the silicon surface, having a characteristic lateral size of 10 nm with the metallic type of tunneling conductivity at low temperatures. Upon the deposition of niobium on a heated substrate, quasi-one-dimensional (1D) and quasi-two-dimensional (2D) structures with typical lateral dimensions of up to 200 nm and three-dimensional pyramidal islands with semiconducting type of tunneling conductivity at low temperatures are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. F. Chibotaru, A. Ceulemans, M. Morelle, G. Teniers, C. Carballeira, and V. V. Moshchalkov, J. Math. Phys. 46, 095108 (2005).

    Article  Google Scholar 

  2. A. S. Mel’nikov, D. A. Ryzhov, M. A. Silaev, and I. A. Shereshevskii, Nanostrukt.: Matfiz. Model. 2, 57 (2007).

    Google Scholar 

  3. C. J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford University Press, Oxford, 1993).

    Google Scholar 

  4. D. Eom, S. Qin, M.-Y. Chou, and C. K. Shih, Phys. Rev. Lett. 96, 027005 (2006).

    Article  Google Scholar 

  5. T. Zhang, P. Cheng, W.-J. Li, Yu-J. Sun, G. Wang, X.-G. Zhu, K. He, L. Wang, X. Ma, X. Chen, Y. Wang, Y. Liu, et al., Nature Phys. 6, 104 (2010).

    Article  Google Scholar 

  6. C.-S. Jiang, S.-C. Li, H.-B. Yu, D. Eom, X.-D. Wang, Ph. Ebert, J.-F. Jia, Q.-K. Xue, and C.-K. Shih, Phys. Rev. Lett. 92, 106104 (2004).

    Article  Google Scholar 

  7. S.-Ch. Li, J.-F. Jia, X. Ma, Qi-K. Xue, Y. Han, and F. Liu, Appl. Phys. Lett. 89, 123111 (2006).

    Article  Google Scholar 

  8. T. Cren, D. Fokin, F. Debontridder, V. Dubost, and D. Roditchev, Phys. Rev. Lett. 102, 127005 (2009).

    Article  Google Scholar 

  9. T. Cren, L. Serrier-Garcia, F. Debontridder, and D. Roditchev, Phys. Rev. Lett. 107, 097202 (2011).

    Article  Google Scholar 

  10. Y. X. Ning, C. L. Song, Z. L. Guan, X. C. Ma, Xi. Chen, J. F. Jia, and Q. K. Xue, Europhys. Lett. 85, 27004 (2009).

    Article  Google Scholar 

  11. J. Y. Cheng and L. J. Chen, J. Appl. Phys. 69, 2161 (1991).

    Article  Google Scholar 

  12. S. R. Mahamuni, D. T. Abell, and E. D. Williams, Solid State Commun. 68, 145 (1988).

    Article  Google Scholar 

  13. G. Oya, M. Koishi, and Y. Sawada, J. Appl. Phys. 60, 1440 (1986).

    Article  Google Scholar 

  14. A. R. Wildes, R. A. Cowley, R. C. C. Ward, M. R. Wells, C. Jansen, L. Wireen, and J. P. Hill, J. Phys.: Condens. Matter 10, L631 (1998).

    Google Scholar 

  15. K. Yoshii, H. Yamamoto, K. Saiki, and A. Koma, Phys. Rev. B: Condens. Matter Mater. Phys. 52, 13570 (1995).

    Article  Google Scholar 

  16. M. T. Clapp and R. M. Rose, J. Appl. Phys. 51, 540 (1980).

    Article  Google Scholar 

  17. E. Horache, J. E. Fischer, and J. Van der Spiegel, J. Appl. Phys. 68, 4652 (1990).

    Article  Google Scholar 

  18. S. Prasad and A. Paul, Acta Mater. 59, 1577 (2011).

    Article  Google Scholar 

  19. R. D. Feldman and R. H. Hammond, J. Appl. Phys. 52, 1427 (1981).

    Article  Google Scholar 

  20. D. U. Gubser, R. A. Hein, R. M. Waterstrat, and A. Junod, Phys. Rev. B: Solid State 14, 3856 (1976).

    Article  Google Scholar 

  21. T. Nakanishi, M. Takeyama, A. Noya, and K. Sasaki, J. Appl. Phys. 77, 948 (1995).

    Article  Google Scholar 

  22. E. F. Skelton, D. U. Gubser, J. O. Willis, R. A. Hein, S.C. Yu, I. L. Spain, R. M. Waterstrat, and A. R. Sweedler, Phys. Rev. B: Condens. Matter Mater. Phys. 20, 4538 (1979).

    Article  Google Scholar 

  23. D. Dew-Hughes and V. G. Rivlin, Nature 250, 723 (1975).

    Article  Google Scholar 

  24. K. Oura, V. G. Lifshits, A. A. Saranin, A. V. Zotov, and M. Katayama, Introduction to Surface Physics (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  25. B. L. Ong, W. Ong, Y. L. Foo, J. Pan, and E. S. Tok, Surf. Sci. 606, 1649 (2012).

    Article  Google Scholar 

  26. A. B. Odobescu, A. A. Maizlakh, and S. V. Zaitsev-Zotov, “Electron correlation effects in transport and tunneling spectroscopy of the Si(111)-7 × 7 surface,” arXiv:1411.5590 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Aladyshkin.

Additional information

Original Russian Text © A.V. Putilov, D.A. Muzychenko, A.Yu. Aladyshkin, 2016, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, 2016, No. 3, pp. 10–18.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Putilov, A.V., Muzychenko, D.A. & Aladyshkin, A.Y. Peculiarities of the initial stage of growth of niobium-based nanostructures on a Si(111)-7 × 7 surface. J. Surf. Investig. 10, 273–281 (2016). https://doi.org/10.1134/S1027451016020178

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451016020178

Keywords

Navigation