Skip to main content
Log in

Diabatic Potential Energy Surfaces of the Interacting Triplet States 3A2 and 3B1 of the Ozone Molecule

  • SPECTROSCOPY OF AMBIENT MEDIUM
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Three-dimensional ab initio potential energy surfaces of the interacting triple states 3A2 and 3B1 of the O3 molecule are constructed within the diabatization approach implemented in the MOLPRO package. These two states are responsible for the strongest singlet–triplet transitions in the Wulf band of O3. The molecular orbitals are optimized by the CASSCF method with the active space CAS(18, 12) involving three electronic states (X1A1, 3A2, and 3B1). The correlation energy is computed by icMRCI(Q). The influence of the basis set size on the accuracy of both the adiabatic excitation energy and origins of the vibronic transitions is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. S. Vasilchenko, A. Barbe, E. Starikova, S. Kassi, D. Mondelain, A. Campargue, and V. Tyuterev, “Detection and assignment of ozone bands near 95% of the dissociation threshold: Ultrasensitive experiments for probing potential energy function and vibrational dynamics,” Phys. Rev. A: 102 (5), 052804 (2020). https://doi.org/10.1103/PhysRevA.102.052804

    Article  ADS  Google Scholar 

  2. S. S. Vasilchenko, S. Kassi, D. Mondelain, and A. Campargue, “High-resolution laser spectroscopy of the ozone molecule at the dissociation threshold,” Atmos. Ocean. Opt. 34 (5), 373–380 (2021). https://doi.org/10.1134/S1024856021050237

    Article  Google Scholar 

  3. B. Rusic, Unpublished results obtained from active thermochemical tables (ATcT) based on the Core (Argonne) Thermochemical Network version 1.110.2010.

  4. A. Barbe, S. Mikhailenko, E. Starikova, and V. Tyuterev, “High resolution infrared spectroscopy in support of ozone atmospheric monitoring and validation of the potential energy function,” Molecules 27 (3), 911 (2022). https://doi.org/10.3390/MOLECULES27030911

    Article  Google Scholar 

  5. I. E. Gordon, L. S. Rothman, R. J. Hargreaves, R. Hashemi, E. V. Karlovets, F. M. Skinner, E. K. Conway, C. Hill, R. V. Kochanov, Y. Tan, P. Wcislo, A. A. Finenko, K. Nelson, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, A. Coustenis, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, E. J. Mlawer, A. V. Nikitin, V. I. Perevalov, M. Rotger, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, E. M. Adkins, A. Baker, A. Barbe, E. Cane, A. G. Csaszar, A. Dudaryonok, O. Egorov, A. J. Fleisher, H. Fleurbaey, A. Foltynowicz, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, V. M. Horneman, X. Huang, T. Karman, J. Karns, S. Kassi, I. Kleiner, V. Kofman, F. Kwabia-Tchana, N. N. Lavrentieva, T. J. Lee, D. A. Long, A. A. Lukashevskaya, O. M. Lyulin, V. Y. Makhnev, W. Matt, S. T. Massie, M. Melosso, S. N. Mikhailenko, D. Mondelain, H. S. P. Muller, O. V. Naumenko, A. Perrin, O. L. Polyansky, E. Raddaoui, P. L. Raston, Z. D. Reed, M. Rey, C. Richard, R. Tobias, I. Sadiek, D. W. Schwenke, E. Starikova, K. Sung, F. Tamassia, S. A. Tashkun, AuweraJ. Vander, I. A. Vasilenko, A. A. Vigasin, G. L. Villanueva, B. Vispoel, G. Wagner, A. Yachmenev, and S. N. Yurchenko, “The HITRAN2020 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 277, 107949 (2022). https://doi.org/10.1016/J.JQSRT.2021.107949

    Article  Google Scholar 

  6. T. Delahaye, R. Armante, N. A. Scott, N. Jacquinet-Husson, A. Chedin, L. Crepeau, C. Crevoisier, V. Douet, A. Perrin, A. Barbe, V. Boudon, A. Campargue, L. H. Coudert, V. Ebert, J. M. Flaud, R. R. Gamache, D. Jacquemart, A. Jolly, TchanaF. Kwabia, A. Kyuberis, G. Li, O. M. Lyulin, L. Manceron, S. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. Nikitin, V. I. Perevalov, C. Richard, E. Starikova, S. A. Tashkun, V. G. Tyuterev, Auwera J. Vander, B. Vispoel, A. Yachmenev, and S. Yurchenko, “The 2020 edition of the GEISA spectroscopic database,” J. Mol. Spectrosc. 380, 111510 (2021). https://doi.org/10.1016/J.JMS.2021.111510

    Article  Google Scholar 

  7. A. Barbe, S. Mikhailenko, E. Starikova, and V. Tyuterev, “Infrared spectra of 16O3 in the 900–5600 cm–1 range revisited: Empirical corrections to the S&MPO and HITRAN2020 line lists,” J. Quant. Spectrosc. Radiat. Transfer 276, 107936 (2021). https://doi.org/10.1016/J.JQSRT.2021.107936

    Article  Google Scholar 

  8. D. Albert, B. K. K. Antony, Y. A. Ba, Y. L. Babikov, P. Bollard, V. Boudon, F. Delahaye, G. Del Zanna, M. S. Dimitrijevic, B. J. Drouin, M.-L. L. Dubernet, F. Duensing, M. Emoto, C. P. P. Endres, A. Z. Fazliev, J.-M. M. Glorian, I. E. Gordon, P. Gratier, C. Hill, D. Jevremovic, C. Joblin, D.-H. H. Kwon, R. V. Kochanov, E. Krishnakumar, G. Leto, P. A. Loboda, A. A. Lukashevskaya, O. M. Lyulin, B. P. Marinkovic, A. Markwick, T. Marquart, N. J. Mason, C. Mendoza, T. J. Millar, N. Moreau, S. V. Morozov, T. Moller, H. S. P. P. Muller, G. Mulas, I. Murakami, Y. Pakhomov, P. Palmeri, J. Penguen, V. I. Perevalov, N. Piskunov, J. Postler, A. I. Privezentsev, P. Quinet, Y. Ralchenko, Y.-J. J. Rhee, C. Richard, G. Rixon, L. S. Rothman, E. Roueff, T. Ryabchikova, S. Sahal-Brechot, P. Scheier, P. Schilke, S. Schlemmer, K. W. Smith, B. Schmitt, I. Y. Skobelev, V. A. Sreckovic, E. Stempels, S. A. Tashkun, J. Tennyson, V. G. Tyuterev, C. Vastel, V. Vujcic, V. Wakelam, N. A. Walton, C. Zeippen, and C. M. Zwolf, “A decade with VAMDC: Results and ambitions,” Atoms 8 (4), 76 (2020). https://doi.org/10.3390/atoms8040076

    Article  ADS  Google Scholar 

  9. S. Vasilchenko, D. Mondelain, S. Kassi, and A. Campargue, “Predissociation and pressure dependence in the low frequency far wing of the Wulf absorption band of ozone near 1.2 μm,” J. Quant. Spectrosc. Radiat. Transfer 272, 107678 (2021). https://doi.org/10.1016/j.jqsrt.2021.107678

    Article  Google Scholar 

  10. S. Yu. Grebenshchikov, Z.-W. Qu, H. Zhu, and R. Schinke, “Spin-orbit mechanism of predissociation in the Wulf band of ozone,” J. Chem. Phys. 125, 021102 (2006). https://doi.org/10.1063/1.2219444

    Article  ADS  Google Scholar 

  11. D. Mondelain, R. Jost, S. Kassi, R. H. Judge, V. Tyuterev, and A. Campargue, “Predissociation and spectroscopy of the 3A2(000) state of 18O3 from CRDS spectra of the 3A2(000) ← X1A1(110) hot band near 7900 cm−1,” J. Quant. Spectrosc. Radiat. Transfer 113 (11), 840–849 (2012). https://doi.org/10.1016/j.jqsrt.2012.01.015

    Article  ADS  Google Scholar 

  12. B. Abel, A. Charvat, and S. F. Deppe, “Lifetimes of the lowest triplet state of ozone by intracavity laser absorption spectroscopy,” Chem. Phys. Lett. 277 (4), 347–355 (1997). https://doi.org/10.1016/S0009-2614(97)00893-2

    Article  ADS  Google Scholar 

  13. D. Inard, A. J. Bouvier, R. Bacis, S. Churassy, F. Bohr, J. Brion, J. Malicet, and M. Jacon, “Absorption cross-sections and lifetime of the 3A2 “metastable” state of ozone," Chem. Phys. Lett. 287, 515–524 (1998). https://doi.org/10.1016/S0009-2614(98)00200-0

    Article  ADS  Google Scholar 

  14. D. Xie, H. Guo, and K. A. Peterson, “Ab initio characterization of low-lying triplet state potential-energy surfaces and vibrational frequencies in the Wulf band of ozone,” J. Chem. Phys. 115, 10404 (2001). https://doi.org/10.1063/1.1417502

    Article  ADS  Google Scholar 

  15. U. Wachsmuth and B. Abel, “Linewidths and line intensity measurements in the weak 3A2(000) ← X1A1(000) band of ozone by pulsed cavity ringdown spectroscopy,” J. Geophys. Res. 108 (D15), 4473 (2003). https://doi.org/10.1029/2002JD003126

    Article  Google Scholar 

  16. O. R. Wulf and L. S. Deming, “The effect of visible solar radiation on the calculated distribution of atmospheric ozone,” Terr. Magn. Atmos. Electr. 41 (4), 375–378 (1936). https://doi.org/10.1029/TE041I004P00375

    Article  Google Scholar 

  17. O. R. Wulf and L. S. Deming, “The distribution of atmospheric ozone in equilibrium with solar radiation and the rate of maintenance of the distribution,” Terr. Magn. Atmos. Electr. 42 (2), 195–202 (1937). https://doi.org/10.1029/TE042I002P00195

    Article  Google Scholar 

  18. A. J. Bouvier, D. Inard, V. Veyret, B. Bussery, R. Bacis, S. Churassy, J. Brion, J. Malicet, and R. H. Judge, “Contribution to the analysis of the 3A2 ← X1A2 “Wulf” transition of ozone by high-resolution Fourier transform spectrometry," J. Mol. Spectrosc. 190 (2), 189–197 (1998). https://doi.org/10.1006/jmsp.1998.7578

    Article  ADS  Google Scholar 

  19. S. F. Deppe, U. Wachsmuth, B. Abel, M. Bittererova, S. Yu. Grebenshchikov, R. Siebert, and R. Schinke, “Resonance spectrum and dissociation dynamics of ozone in the 3B2 electronically excited state: Experiment and theory,” J. Chem. Phys. 121, 5191 (2004). https://doi.org/10.1063/1.1778381

    Article  ADS  Google Scholar 

  20. S. M. Anderson and K. Mauersberger, “Ozone absorption spectroscopy in search of low-lying electronic states,” J. Geophys. Res. 100 (D2), 3033 (1995). https://doi.org/10.1029/94JD03003

    Article  ADS  Google Scholar 

  21. S. M. Anderson, J. Morton, and K. Mauersberger, “Near infrared absorption spectra of 16O3 and 18O3: Adiabatic energy of the 1 A 2 state?,” J. Chem. Phys. 93, 3826 (1990). https://doi.org/10.1063/1.458767

    Article  ADS  Google Scholar 

  22. S. M. Anderson, P. Hupalo, and K. Mauersberger, “Rotational structure in the near infrared absorption spectrum of ozone,” J. Chem. Phys. 99, 737 (1993). https://doi.org/10.1063/1.465747

    Article  ADS  Google Scholar 

  23. J. Gunther, S. M. Anderson, G. Hilpert, and K. Mauersberger, “Rotational structure in the absorption spectra of 18O3 and 16O3 near 1 μm: A comparative study of the 3A2 and 3B2 states,” J. Chem. Phys. 108, 5449 (1998). https://doi.org/10.1063/1.475933

    Article  ADS  Google Scholar 

  24. M. Braunstein, R. L. Martin, and P. J. Hay, “Investigation of the role of triplet states in the Wulf bands of ozone,” J. Chem. Phys. 102, 3662 (1995). https://doi.org/10.1063/1.468595

    Article  ADS  Google Scholar 

  25. A. J. Bouvier, V. Veyret, I. Russier, D. Inard, S. Churassy, R. Bacis, J. Brion, J. Malicet, and R. H. Judge, “A comparative rotational analysis of the \(0_{0}^{0}\) bands of the 3A2 ← 1A1 Wulf transition for the isotopomers 16O3 and 18O3 of ozone by high resolution Fourier transform spectrometry,” Spectrochim. Acta 55 (14), 2811–2821 (1999). https://doi.org/10.1016/S1386-1425(99)00096-710.1016/S1386-1425(99)00096-7

    Article  Google Scholar 

  26. A. J. Bouvier, G. Wannous, S. Churassy, R. Bacis, J. Brion, J. Malicet, and R. H. Judge, “Spectroscopy and predissociation of the 3A2 electronic state of ozone 16O3 and 18O3 by high resolution Fourier transform spectrometry,” Spectrochim. Acta. Part A 57 (3), 561–579 (2001). https://doi.org/10.1016/S1386-1425(00)00409-1

    Article  ADS  Google Scholar 

  27. M. Mirahmadi, J. Perez-Rios, O. Egorov, V. Tyuterev, and V. Kokoouline, “Ozone formation in ternary collisions: Theory and experiment reconciled,” Phys. Rev. Lett. 128 (10), 108501 (2022). https://doi.org/10.1103/PhysRevLett.128.108501

    Article  ADS  Google Scholar 

  28. P. Rosmus, P. Palmieri, and R. Schinke, “The asymptotic region of the potential energy surfaces relevant for the O(3P) + O2 \((X{}^{3}\Sigma _{g}^{ - })\) \( \rightleftharpoons \) O3 reaction,” J. Chem. Phys. 117, 4871 (2002). https://doi.org/10.1063/1.149139610.1063/1.1491396

    Article  ADS  Google Scholar 

  29. M. Braunstein and R. T. Pack, “Simple theory of diffuse structure in continuous ultraviolet spectra of polyatomic molecules. III. Application to the Wulf-Chappuis band system of ozone,” J. Chem. Phys. 96, 6378 (1992). https://doi.org/10.1063/1.462632

    Article  ADS  Google Scholar 

  30. B. Minaev and H. Agren, “The interpretation of the Wulf absorption band of ozone,” Chem. Phys. Lett. 217 (5-6), 531–538 (1994). https://doi.org/10.1016/0009-2614(93)E1445-M

    Article  ADS  Google Scholar 

  31. O. Egorov, R. R. Valiev, T. Kurten, and V. Tyuterev, “Franck-Condon factors and vibronic patterns of singlet-triplet transitions of 16O3 molecule falling near the dissociation threshold and above,” J. Quant. Spectrosc. Radiat. Transfer 273, 107834 (2021). https://doi.org/10.1016/j.jqsrt.2021.107834

    Article  Google Scholar 

  32. S. Yu. Grebenshchikov, Z.-W. Qu, H. Zhuz, and R. Schinke, “New theoretical investigations of the photodissociation of ozone in the Hartley, Huggins, Chappuis, and Wulf bands,” Phys. Chem. Chem. Phys. 9, 2044–2064 (2007). https://doi.org/10.1039/B701020F

    Article  Google Scholar 

  33. S. S. Vasilchenko, O. V. Egorov, and V. G. Tyuterev, “Experiment on recording ozone absorption transitions to 3A2 triplet electronic state by high-sensitivity cavity ring-down spectroscopy in the range 9350–10 000 cm–1,” Atmos. Ocean. Opt. 36 (3), 191–198 (2023).

    Article  Google Scholar 

  34. V. G. Tyuterev, R. V. Kochanov, S. A. Tashkun, F. Holka, and P. G. Szalay, “New analytical model for the ozone electronic ground state potential surface and accurate ab initio vibrational predictions at high energy range,” J. Chem. Phys. 139, 134307 (2013). https://doi.org/10.1063/1.4821638

    Article  ADS  Google Scholar 

  35. D. Simah, B. Hartke, and H.-J. Werner, “Photodissociation dynamics of H2S on new coupled ab initio potential energy surfaces,” J. Chem. Phys. 111, 4523 (1999). https://doi.org/10.1063/1.479214

    Article  ADS  Google Scholar 

  36. T. Karman, M. Besemer, A. van der Avoird, and G. C. Groenenboom, “Diabatic states, nonadiabatic coupling, and the counterpoise procedure for weakly interacting open shell molecules,” J. Chem. Phys. 148, 094105 (2018). https://doi.org/10.1063/1.5013091

    Article  ADS  Google Scholar 

  37. C. A. Mead and D. G. Truhlar, “Conditions for the definition of a strictly diabatic electronic basis for molecular systems,” J. Chem. Phys. 77, 6090 (1982). https://doi.org/10.1063/1.443853

    Article  ADS  Google Scholar 

  38. H.-J. Werner and W. Meyer, “MCSCF study of the avoided curve crossing of the two lowest 1Σ+ states of LiF,” J. Chem. Phys. 74, 5802 (1981). https://doi.org/10.1063/1.440893

    Article  ADS  Google Scholar 

  39. A. J. C. Varandas, “Accurate ab initio potential energy curves for the classic Li-F ionic-covalent interaction by extrapolation to the complete basis set limit and modeling of the radial nonadiabatic coupling,” J. Chem. Phys. 131, 124128 (2009). https://doi.org/10.1063/1.3237028

    Article  ADS  Google Scholar 

  40. H. An and K. K. Baeck, “A practical and efficient diabatization that combines Lorentz and Laplace functions to approximate nonadiabatic coupling terms,” J. Chem. Phys. 143, 194102 (2015). https://doi.org/10.1063/1.4935607

    Article  ADS  Google Scholar 

  41. R. P. Brady, S. N. Yurchenko, G.-S. Kim, W. Somogyi, and J. Tennyson, “An ab initio study of the rovibronic spectrum of sulphur monoxide (SO): Diabatic vs. adiabatic representation,” Phys. Chem. Chem. Phys. 24, 24 076–24 088 (2022). https://doi.org/10.1039/D2CP03051A

    Article  Google Scholar 

  42. H.-J. Werner, P. J. Knowles, F. R. Manby, J. A. Black, K. Doll, A. Heßelmann, D. Kats, A. Köhn, T. Korona, D. A. Kreplin, Q. Ma, T. F. Miller, A. Mitrushchenkov, K. A. Peterson, I. Polyak, G. Rauhut, and M. Sibaev, “The Molpro quantum chemistry package,” J. Chem. Phys. 152, 144107 (2020). https://doi.org/10.1063/5.0005081

    Article  ADS  Google Scholar 

  43. www.molpro.net. Cited November 15, 2022.

  44. H. Partridge and D. W. Schwenke, “The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data,” J. Chem. Phys. 106, 4618 (1997). https://doi.org/10.1063/1.473987

    Article  ADS  Google Scholar 

  45. T.-S. Ho and H. Rabitz, “A general method for constructing multidimensional molecular potential energy surfaces from ab initio calculations,” J. Chem. Phys. 104, 2584 (1996). https://doi.org/10.1063/1.470984

    Article  ADS  Google Scholar 

  46. J. Tennyson, M. A. Kostin, P. Barletta, G. J. Harris, O. L. Polyansky, J. Ramanlal, and N. F. Zobov, “DVR3D: A program suite for the calculation of rotation-vibration spectra of triatomic molecules,” Comput. Phys. Commun. 163 (2), 85–116 (2004). https://doi.org/10.1016/j.cpc.2003.10.003

    Article  ADS  Google Scholar 

  47. M. Allan, N. J. Mason, and J. A. Davies, “Study of electronically excited states of ozone by electron-energy-loss spectroscopy,” J. Chem. Phys. 105, 5665 (1996). https://doi.org/10.1063/1.472412

    Article  ADS  Google Scholar 

Download references

Funding

The work was financially supported by the Russian Science Foundation (project no. 19-12-00171-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Egorov.

Ethics declarations

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorov, O.V. Diabatic Potential Energy Surfaces of the Interacting Triplet States 3A2 and 3B1 of the Ozone Molecule. Atmos Ocean Opt 36, 277–286 (2023). https://doi.org/10.1134/S102485602304005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485602304005X

Keywords:

Navigation