Skip to main content
Log in

Analysis of the Correctness of Retrieving the Vertical Atmospheric Temperature Distribution from Lidar Signals of Molecular Scattering at the Main Lidar of the Siberian Lidar Station

  • REMOTE SENSING OF ATMOSPHERE, HYDROSPHERE, AND UNDERLYING SURFACE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The methodological issues of lidar measurements of the vertical distribution of atmospheric temperature up to altitudes of 90 km are considered. The method is based on lidar measurements of the vertical profile of atmospheric molecular density using the Rayleigh scattering effect. The results obtained in the upgraded channel of the Rayleigh scattering of the 2.2-m diameter lidar based on the main mirror of the Siberian Lidar Station (SLS) are discussed. One of problems in carrying out measurements with the use of large-diameter telescopes is the giant dynamic range of lidar responses. The work with this range requires special attention both to the methodology and to the experimental technique. For solving this problem, an improved technique for the retrieval of temperature from molecular backscattering lidar signals is proposed. Numerical experiments have shown that the accuracy of the temperature profile retrieval depends on the choice of the position of the calibration point and the error in setting the temperature in it. The technique of the temperature profile retrieval, when the calibration point is chosen at the top of a sounding path, is sufficiently stable even under conditions of a giant dynamic range of lidar responses at the SLS. The comparison of the results of temperature retrieval from the real lidar responses with the satellite measurement data revealed significant discrepancies associated with the distorting instrumental and atmospheric effects on the lidar signal shape. A correction procedure based on the lidar calibration can significantly reduce measurement errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. D. Hinkley, Laser Monitoring of the Atmosphere (Springer, Berlin, 1976).

    Book  Google Scholar 

  2. C. Weitkamp, Lidar, Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, Berlin, Heidelberg, 2005).

    Google Scholar 

  3. U. Von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman Lidar: Objectives, configuration, and performance,” Ann. Geophys. 18 (7), 815–833 (2000). https://doi.org/10.1007/s00585-000-0815-2

    Article  ADS  Google Scholar 

  4. V. V. Zuev, A. V. El’nikov, and V. D. Burlakov, Laser Sounding of the Middle Atmosphere (RASKO, Tomsk, 2002) [in Russian].

    Google Scholar 

  5. C. R. Philbrick, F. J. Schmidlin, K. U. Grossmann, G. Lange, D. Offermann, K. D. Baker, D. Krankowsky, and U. von Zahn, “Density and temperature structure over northern Europe,” J. Atmos. Terr. Phys. 47 (1–3), 159–172 (1985). https://doi.org/10.1016/0021-9169(85)90131-X

    Article  ADS  Google Scholar 

  6. S. M. Bobrovnikov, V. I. Zharkov, A. I. Nadeev, and D. A. Trifonov, “Analysis of the efficiency of methods for retrieval of vertical profile of atmospheric temperature from molecular scattering at the main lidar of the Siberian Lidar Station,” Proc. SPIE—Int. Soc. Opt. Eng. 12086, 1208612–1 (2021). https://doi.org/10.1117/12.2616676

  7. F. G. Fernald, “Analysis of atmospheric lidar observations: Some comments,” Appl. Opt. 23 (5), 652–653 (1984).

    Article  ADS  Google Scholar 

  8. Wang Zhenzhu, Liu Dong, Xie Chenbo, and Zhou Jun, “An iterative algorithm to estimate LIDAR ratio for thin cirrus cloud over aerosol layer,” J. Opt. Soc. Korea 15 (3), 209–215 (2011). https://doi.org/10.3807/JOSK.2011.15.3.209

    Article  Google Scholar 

  9. E. J. McCartney, Optics of the Atmosphere: Scattering by Molecules and Particles (John Wiley & Sons, New York, 1976).

    Google Scholar 

  10. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert W function,” Adv. Comput. Math. 5 (1), 329–359 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Edlen, “The refractive index of air,” Metrologia 2 (2), 71–80 (1966).

    Article  ADS  Google Scholar 

  12. A. Hauchecorne and M. L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 75 km,” Geophys. Rev. Lett. 7 (5), 565–568 (1980).

    Article  ADS  Google Scholar 

  13. http://www.docs.exponenta.ru. Cited April 20, 2021.

  14. G. Marlton, A. Charlton-Perez, G. Harrison, I. Polichtchouk, A. Hauchecorne, P. Kekchut, R. Wing, Th. Leblanc, and W. Steinbrecht, “Using a network of temperature lidars to identify temperature biases in the upper stratosphere in ECMWF reanalyses,” Atmos. Chem. Phys. 21, 6079–6092 (2021).

    Article  ADS  Google Scholar 

  15. V. V. Zuev, V. N. Marichev, and S. L. Bondarenko, “Study of the accuracy characteristics of reconstruction of temperature profiles from lidar signals of molecular scattering,” Atmos. Ocean. Opt. 9 (12), 1026–1029 (1996).

    Google Scholar 

  16. V. V. Zuev, V. N. Marichev, S. L. Bondarenko, S. I. Dolgii, and E. V. Sharabarin, “Lidar measurements of temperature using Rayleigh light scattering in the lower stratosphere for the period from May to December of 1995,” Atmos. Ocean. Opt. 9 (10), 879–884 (1996).

    Google Scholar 

  17. M. R. Schoeberl, A. R. Douglass, E. Hilsenrath, P. K. Bhartia, R. Beer, J. W. Waters, M. R. Gunson, L. Froidevaux, J. C. Gille, J. J. Barnett, P. F. Levelt, and P. DeCola, “Overview of the EOS Aura Mission,” IEEE Transac. Geosci. Remote Sens. 44 (5), 1066–1074 (2006). https://doi.org/10.1109/TGRS.2005.861950

    Article  ADS  Google Scholar 

  18. S. M. Bobrovnikov, E. V. Gorlov, V. I. Zharkov, N. G. Zaytsev, A. I. Nadeev, D. A. Trifonov, and Y. V. Gridnev, “Measurement of atmospheric temperature in the range of 40–90 km at the Siberian Lidar Station using molecular scattering signal,” Proc. SPIE—Int. Soc. Opt. Eng. 11916, 119162 (2021). https://doi.org/10.1117/12.2602070

  19. N. G. Zaitsev, A. I. Nadeev, and D. A. Trifonov, “O-ptimization of the molecular scattering signal registration system at the Siberian Lidar Station for the photon counting mode,” Proc. SPIE—Int. Soc. Opt. Eng. 11916, 11916 (2021). https://doi.org/10.1117/12.2606359

  20. S. M. Bobrovnikov, E. V. Gorlov, V. I. Zharkov, and D. A. Trifonov, “Alignment technique and quality check of the primary mirror of the Siberian Lidar Station,” Atmos. Ocean. Opt. 33 (6), 696–701 (2020). https://doi.org/10.1134/S1024856020060081

    Article  Google Scholar 

  21. V. A. Korshunov and D. S. Zubachev, “Increase in the aerosol backscattering ratio in the lower mesosphere in 2019–2021 and its effect on temperature measurements with the Rayleigh method,” Atmos. Ocean. Opt. 35 (4), 366–370 (2022).

    Article  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Science, project no. 121031500341). It was carried out with the use of the equipment of the Common Use Center “Atmosphere” partially financially supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-661).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Zharkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobrovnikov, S.M., Zharkov, V.I., Zaitsev, N.G. et al. Analysis of the Correctness of Retrieving the Vertical Atmospheric Temperature Distribution from Lidar Signals of Molecular Scattering at the Main Lidar of the Siberian Lidar Station. Atmos Ocean Opt 35, 704–712 (2022). https://doi.org/10.1134/S1024856022060057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856022060057

Keywords:

Navigation