Skip to main content
Log in

Absorption Spectrum of Carbon Dioxide in the 4350–4550 cm–1 Region

  • SPECTROSCOPY OF AMBIENT MEDIUM
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The absorption spectrum of a natural sample of carbon dioxide in the 4350–4550 cm–1 region was recorded at the V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, at a Bruker IFS 125 HR Fourier transform spectrometer with a 30-m base multipass gas cell equipped with a White-type optical system. The spectrum was recorded with a spectral resolution of 0.02 cm–1 at a temperature of 301.7 K, a pressure of 306 mbar, and an optical path length of 1058 m. The sensitivity attained allowed recording spectral lines with intensities of 10–28 cm–1/(molec. cm–2) at 296 K. The positions and intensities of 453 spectral lines in 17 bands of five CO2 isotopologues (12C16O2, 13C16O2, 16О12C18O, 16О13C18O, and 16О13C17O) were measured. The 33303–02201, 41104–02201, and 41104–10002 bands of the principal isotopologue (12C16O2) and the 31103–00001 bands of 13C16O2 and 16О12C18O isotopologues were recorded for the first time. The line positions and intensities measured were compared with the values from the HITRAN2020 database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. F. W. Taylor, D. Crisp, and B. Bezard, “Near-infrared sounding of the lower atmosphere of Venus,” in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, Ed. by S.W. Bougher, D.M. Hunten, and R.J. Phillips, (University of Arizona Press, Tucson, 1997), p. 325–351.

    Google Scholar 

  2. E. Marcq, B. Bezard, P. Drossart, G. Piccioni, J. M. Reess, and F. Henry, “A latitudinal survey of CO, OCS, H2O, and SO2 in the lower atmosphere of Venus: spectroscopic studies using VIRTIS-H,” J. Geophys. Res. 113, E00B07 (2008).

    ADS  Google Scholar 

  3. E. Marcq, T. Encrenaz, B. Bezard, and M. Birlan, “Remote sensing of Venus’ lower atmosphere from ground-based IR spectroscopy: Latitudinal and vertical distribution of minor species,” Planet. Space Sci. 54, 1360–1370 (2006).

    Article  ADS  Google Scholar 

  4. I. E. Gordon, L. S. Rothman, R. J. Hargreaves, R. Hashemi, E. V. Karlovets, F. M. Skinner, E. K. Conway, C. Hill, R. V. Kochanov, Y. Tan, P. Wcislo, A. A. Finenko, K. Nelson, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, A. Coustenis, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, E. J. Mlawer, A. V. Nikitin, V. I. Perevalov, M. Rotger, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, E. M. Adkins, A. Baker, A. Perrin, K. P. Shine, M. A. H. Smith, V. G. Tyuterev, A. Barbe, E. Cane, A. G. Csaszar, O. Egorov, A. J. Fleisher, H. Fleurbaey, A. Foltynowicz, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, V.-M. Horneman, X. Huang, T. Karman, J. Karns, I. Kleiner, V. Kofman, F. Kwabia-Tchana, T. J. Lee, D. A. Long, A. A. Lukashevskaya, O. M. Lyulin, V. Yu. Makhnev, W. Matt, S. T. Massie, M. Melosso, S. N. Mikhailenko, D. Mondelain, H. S. P. Muller, O. V. Naumenko, A. Perrin, O. L. Polyansky, E. Raddaoui, P. L. Raston, Z. D. Reed, M. Rey, C. Richard, R. Tobi, T. J. Leeas, I. Sadiek, D. W. Schwenke, E. Starikova, K. Sung, F. Tamassia, S. A. Tashkun, AuweraJ. Vander, I. A. Vasilenko, A. A. Vigasin, G. L. Villanueva, B. Vispoel, G. Wagner, A. Yachmenev, and S. N. Yurchenko, “The HITRAN2020 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 227 (2022). https://doi.org/10.1016/j.jqsrt.2021.107949

  5. J. Y. Mandin, “Interpretation of the CO2 absorption bands observed in the Venus infrared spectrum between 1 and 2.5 μm,” J. Mol. Spectrosc. 67, 304–321 (1977).

    Article  ADS  Google Scholar 

  6. L. P. Giver, J. Kshirsagar, R. S. Freedman, and C. Chackerian, Jr., “Line intensity and position measurements and derived band parameters of the 31103-00001 12C16O2 band and its two nearby hot bands,” in Abstr. of the 5th HITRAN Conference, June 23–25, 1998 (Hanscom AFB, Massachusetts, 1998), p. 30–31.

  7. L. P. Giver and Jr. C. Chakerian, “Rovibrational intensities for the (3110)IV–(0000) band of 12C16O2 at 4416 cm–1,” J. Mol. Spectrosc. 148, 80–85 (1999).

    Article  ADS  Google Scholar 

  8. Y. Ding, P. Macko, D. Romanini, V. I. Perevalov, S. A. Tashkun, J. L. Teffo, S. M. Hu, and A. Campargue, “High sensitivity cw-cavity ringdown and Fourier transform absorption spectroscopies of 13CO2,” J. Mol. Spectrosc. 226, 146–160 (2004).

    Article  ADS  Google Scholar 

  9. C. E. Miller, M. A. Montgomery, R. M. Onorato, C. Johstone, T. P. McNicholas, B. Kovaric, and L. R. Brown, “Near infrared spectroscopy of carbon dioxide. II. 16O13C16O and 16O13C18O line positions,” J. Mol. Spectrosc. 228, 355–374 (2004).

    Article  ADS  Google Scholar 

  10. A. Garnache, A. Liu, L. Cerutti, and A. Campargue, “Intracavity laser absorption spectroscopy with a vertical external cavity surface emitting laser at 2.3 μm: Application to water and carbon dioxide,” Chem. Phys. Lett. 416, 22–27 (2005).

    Article  ADS  Google Scholar 

  11. R. A. Toth, L. R. Brown, C. E. Miller, V. Malathy Devi, and D. C. Benner, “Line strengths of 12CO2: 4540 000 cm−1”, J. Mol. Spectrosc. 239, 221–242 (2006).

    Article  ADS  Google Scholar 

  12. Y. G. Borkov, D. Jacquemart, O. M. Lyulin, S. A. Tashkun, and V. I. Perevalov, “Infrared spectroscopy of 17O- and 18O-enriched carbon dioxide: Line positions and intensities in the 3200–4700 cm–1 region. Global modeling of the line positions of the 16O12C17O,” J. Quant. Spectrosc. Radiat. Transfer 137, 57–76 (2014).

    Article  ADS  Google Scholar 

  13. S. Vasilchenko, M. Konefal, D. Mondelain, S. Kassi, P. Cermak, S. A. Tashkun, V. I. Perevalov, and A. Campargue, “The CO2 absorption spectrum in the 2.3 μm transparency window by high sensitivity CRDS: (I) Rovibrational lines,” J. Quant. Spectrosc. Radiat. Transfer 184, 233–240 (2016).

    Article  ADS  Google Scholar 

  14. S. A. Tashkun, V. I. Perevalov, R. R. Gamache, and J. Lamouroux, “CDSD-296, high-resolution carbon dioxide spectroscopic databank: An update,” J. Quant. Spectrosc. Radiat. Transfer 228, 124–131 (2019).

    Article  ADS  Google Scholar 

  15. E. Zak, J. Tennyson, O. L. Polyansky, L. Lodi, N. F. Zobov, S. A. Tashkun, and V. I. Perevalov, “A room temperature CO2 line list with ab initio computed intensities,” J. Quant. Spectrosc. Radiat. Transfer 177, 31–42 (2016).

    Article  ADS  Google Scholar 

  16. E. Zak, J. Tennyson, O. L. Polyansky, L. Lodi, N. F. Zobov, S. A. Tashkun, and V. I. Perevalov, “Room temperature line lists for CO2 asymmetric isotopologues with ab initio computed intensities,” J. Quant. Spectrosc. Radiat. Transfer 203, 265–281 (2017).

    Article  ADS  Google Scholar 

  17. E. Zak, J. Tennyson, O. L. Polyansky, L. Lodi, N. F. Zobov, S. A. Tashkun, and V. I. Perevalov, “Room temperature linelists for CO2 symmetric isotopologues with ab initio computed intensities,” J. Quant. Spectrosc. Radiat. Transfer 189, 267–80 (2017).

    Article  ADS  Google Scholar 

  18. A. Trokhimovskiy, V. Perevalov, O. Korablev, A. Fedorova, K. S. Olsen, J. L. Bertaux, A. Patrakeev, A. Shakun, F. Montmessin, F. Lefevre, and A. Lukashevskaya, “First observation of the magnetic dipole CO2 absorption band at 3.3 μm in the atmosphere of Mars by ExoMars trace gas orbiter ACS instrument,” Astron. Astrophys. 639, A142 (2020).

    Article  Google Scholar 

  19. V. I. Perevalov, A. Yu. Trokhimovskiy, A. A. Lukashevskaya, O. I. Korablev, A. A. Fedorova, and F. Montmessin, “Magnetic dipole and quadrupole absorption in carbon dioxide,” J. Quant. Spectrosc. Radiat. Transfer 259, 107408 (2021).

    Article  Google Scholar 

  20. Yu. G. Borkov, A. M. Solodov, A. A. Solodov, and V. I. Perevalov, “Line intensities of the 01111–00001 magnetic dipole absorption band of 12C16O2: Laboratory measurements,” J. Mol. Spectrosc. 376, 111418 (2021).

    Article  Google Scholar 

  21. H. Fleurbaey, R. Grilli, D. Mondelain, S. Kassi, A. Yachmenev, S. N. Yurchenko, and A. Campargue, “Electric-quadrupole and magnetic-dipole contributions to the ν2 + ν3 band of carbon dioxide near 3.3 μm,” J. Quant. Spectrosc. Radiat. Transfer 266, 107558 (2021).

    Article  Google Scholar 

  22. Yu. N. Ponomarev, A. A. Solodov, A. M. Solodov, T. M. Petrova, and O. V. Naumenko, “FTIR spectrometer with 30 m optical cell and its applications to the sensitive measurements of selective and nonselective absorption spectra,” J. Quant. Spectrosc. Radiat. Transfer 177, 253–260 (2016).

    Article  ADS  Google Scholar 

  23. J. Li, G. Durry, J. Cousin, L. Joly, B. Parvitte, and V. Zeninari, “Self-induced pressure shift and temperature dependence measurements of CO2 at 2.05 μm with a tunable diode laser spectrometer,” Spectrochim. Acta 85 Part A, 74–78 (2012).

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Marinina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marinina, A.A., Borkov, Y.G., Petrova, T.M. et al. Absorption Spectrum of Carbon Dioxide in the 4350–4550 cm–1 Region. Atmos Ocean Opt 35, 8–13 (2022). https://doi.org/10.1134/S1024856022010109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856022010109

Keywords:

Navigation