Skip to main content
Log in

The Influence of Aerosol and Clouds on Underlying Surface Parameters Measured by Sentinel-2A in the Lower Volga Region

  • REMOTE SENSING OF ATMOSPHERE, HYDROSPHERE, AND UNDERLYING SURFACE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract—

A broadband model is developed for simulating the shortwave solar radiation transfer in the Earth’s atmosphere for spectral channels of Sentinel-2A satellite radiometers. This model is based on line-by-line calculations of absorption spectra with the use of modern spectroscopic information and following parameterization of the radiation transmission functions in the form of short exponential series, which allows one to apply the standard discrete-ordinate method to solution of the radiative transfer equation for each exponential component. The errors in the spectral reflectance of the surface due to uncertainties of aerosol extinction in Sentinel-2A channels are estimated for typical optical-meteorological conditions of the Lower Volga region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. P. V. Voronina and E. A. Mamash, “Classification of thematic monitoring for agriculture problems using remote sensing MODIS data,” Vychisl. Tekhnol. 19 (3), 76–102 (2014).

    Google Scholar 

  2. E. F. Vermote and A. Vermeulen, Atmospheric correction algorithm: Spectral reflectances (MOD09). Algorithm theoretical background document, Version 4.0. 1999. http://modis.gsfc.nasa.gov/atbd/atbd_nod08.pdf. Cited January 26, 2021.

  3. Yu. M. Timofeev and A. V. Vasil’ev, Theoretical Grounds for Atmospheric Optics (Nauka, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  4. M. V. Tarasenkov, A. V. Zimovaya, V. V. Belov, and M. V. Engel, “Retrieval of reflection coefficients of the Earth’s surface from MODIS satellite measurements considering radiation polarization,” Atmos. Ocean. Opt. 33 (2), 179–187 (2020).

    Article  Google Scholar 

  5. Y. Li, J. Chen, Q. Ma, H. K. Zhang, and J. Liu, “Evaluation of Sentinel-2A surface reflectance derived using Sen2Cor in North America,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11 (6), 1997–2021 (2018).

    Article  ADS  Google Scholar 

  6. S. Tiwari and A. K. Singh, “Variability of aerosol parameters derived from ground and satellite measurements over Varanasi located in the Indo-Gangetic basin,” Aerosol Air Qual. Res. 13, 627–638 (2013).

    Article  Google Scholar 

  7. I. N. Plakhin, N. V. Pankratova, and E. L. Malakhotkina, “Comparison of ground and satellite monitoring of aerosol optical thickness of the atmosphere in Russia,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Kosmosa 15 (2), 225–234 (2018).

    Article  Google Scholar 

  8. I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tana, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Csaszar, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, AuweraJ. Vander, G. Wagner, J. Wilzewski, P. Wcislo, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).

    Article  ADS  Google Scholar 

  9. K. Stamnes, S. C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27 (12), 2502–2509 (1988).

    Article  ADS  Google Scholar 

  10. ftp://climate.gsfc.nasa.gov/pub/wiscombe/Multiple_ Scatt/. Cited January 26, 2021.

  11. http://kurucz.harvard.edu/sun/irradiance2008. Cited January 26, 2021.

  12. K. M. Firsov, T. Yu. Chesnokova, E. M. Kozodoeva, and A. Z. Fazliev, “Atmospheric radiation distributed information-computational system,” Atmos. Ocean. Opt. 23 (5), 411–417 (2010).

    Article  Google Scholar 

  13. K. M. Firsov, A. A. Razmolov, and I. I. Klitochenko, “Radiation model for spectral channels of radiometers mounted onboard Sentinel-2A and Landsat-8 satellites,” Proc. of the V Intern. Conf. and School for Young Scientists “Information Technologies and Nanotechnologies”, Samara, May 21–24, 2019 (Samara, 2019), pp. 413–419 [in Russian].

  14. C. Emde, R. Buras-Schnell, A. Kylling, B. Mayer, J. Gasteiger, U. Hamann, J. Kylling, B. Richter, C. Pause, T. Dowling, and L. Bugliar, “The LibRadtran software package for radiative transfer calculations (Version 2.0.1),” Geosci. Model Dev. 9, 1647–1672 (2016).

    Article  ADS  Google Scholar 

  15. S. A. Buehler, V. O. John, A. Kottayi, M. Milz, and P. Eriksson, “Efficient Radiative transfer simulations for a broadband infrared radiometer—combining a weighted mean of representative frequencies approach with frequency selection by simulated annealing,” J. Quant. Spectrosc. Radiat. Transfer 111, 602–615 (2010).

    Article  ADS  Google Scholar 

  16. S. V. Afonin, A. D. Bykov, Yu. V. Gridnev, V. V. Zuev, M. Yu. Kataev, V. S. Komarov, A. A. Mitsel’, O. V. Naumenko, K. M, Firsov, T. Yu. Chesnokova, and A. A. Chursin, “Sensing of the atmosphere with the HIRS/2 satellite IR-radiometer,” Atmos. Ocean. Opt. 11 (10), 914–922 (1998).

    Google Scholar 

  17. www.noaa.gov. Cited January 26, 2021.

  18. G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” Environ. Res. Paper, No. 95, 43.

  19. K. M. Firsov and E. V. Bobrov, “Retrieval of the aerosol optical depth from ground-based SPM sun photometer measurements,” Vestn. VolGU. Ser. Mat. Fiz., No. 2, 57–64 (2014).

  20. Study of Radiative Parameters of Aerosol in Russian Asia, Ed. by S.M. Sakerin (Publishing House of IAO SB RAS, Tomsk, 2012) [in Russian].

    Google Scholar 

  21. S. M. Sakerin, D. M. Kabanov, A. V. Smirnov, and B. N. Holben, “Aerosol optical depth of the atmosphere over ocean in the wavelength range 0.37–4 μm,” Int. J. Remote Sens. 29 (9), 2519–2547 (2008). https://doi.org/10.1080/01431160701767492

    Article  ADS  Google Scholar 

  22. Q. Fu, P. Yang, and W. Sun, “An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models,” J. Clim. 11, 2223–2237 (1998).

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Russian Ministry of Science and Higher Education (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yu. Chesnokova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firsov, K.M., Chesnokova, T.Y. & Razmolov, A.A. The Influence of Aerosol and Clouds on Underlying Surface Parameters Measured by Sentinel-2A in the Lower Volga Region. Atmos Ocean Opt 34, 335–340 (2021). https://doi.org/10.1134/S1024856021040072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856021040072

Keywords:

Navigation