Skip to main content
Log in

Specifics of Sounding the Atmospheric Boundary Layer with a Turbulent Lidar

  • REMOTE SENSING OF ATMOSPHERE, HYDROSPHERE, AND UNDERLYING SURFACE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Recommendations on the use of an aerosol turbulent lidar for research in the atmospheric boundary layer are given. A feature of a turbulent lidar is that the sounding path angle should not exceed 10°. It is found that the optimal path angle is 4°, at which it is possible to determine the structural parameter of the refractive index \(C_{n}^{2}\) in the altitude range from 100 m to 1 km. This range can be doubled if sounding at two or three angles to the horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Laser monitoring of the atmosphere, Ed. by E.D. Hinkley (Springer, Berlin, Heidelberg 1976).

    Google Scholar 

  2. G. G. Gimmestad, D. W. Roberts, J. M. Stewart, and J. W. Wood, “Development of the lidar technique for the profiling optical turbulence,” Opt. Eng. 51 (10) (2012). https://doi.org/10.1117/1.OE.51.10.101713

  3. V. A. Banakh and I. A. Razenkov, “Lidar measurements of atmospheric backscattering amplification,” Opt. Spectrosc. 120 (2), 326–334 (2016).

    Article  ADS  Google Scholar 

  4. A. G. Vinogradov, A. S. Gurvich, S. S. Kashkarov, Yu. A. Kravtsov, and V. I. Tatarskii, Invention Certificate No. 359, Byull. Izobret., No. 21 (1989).

  5. A. G. Vinogradov, Yu. A. Kravtsov, and V. I. Tatarskii, “Backscatter effect on bodies placed inside a randomly inhomogeneous medium,” Izv. Vyssh. Ucheb. Zaved. Radiofiz. 16 (7), 1064–1070 (1973).

    Google Scholar 

  6. A. S. Gurvich, “Lidar sounding of turbulence based on the backscatter enhancement effect,” Izv. Atmos. Ocean. Phys. 48 (6), 585–594 (2012).

    Article  Google Scholar 

  7. A. S. Gurvich, RF Patent No. 116245, Byull. Izobret., No. 5 (2012).

  8. A. L. Afanasiev, A. S. Gurvich, and A. P. Rostov, “Experimental study of the backscatter enhancement effect in a turbulent atmosphere,” in Proc. of XVIII Intern. Symp. “Atmospheric and Ocean Optics. Atmospheric Physics ", Irkutsk, 2012 (Publishing House of IAO SB RAS, Tomsk, 2012), p. C95–C99 [in Russian].

  9. I. A. Razenkov, V. A. Banakh, and A. I. Nadeev, RF Utility Patent No. 153460, Byull. Izobret., No. 6 (2015).

  10. I. A. Razenkov and V. A. Banakh, RF Patent No. 165087, Byull. Izobret., No. 10 (2016).

  11. Yu. A. Kravtsov and A. I. Saichev “Effects of double passage of waves in randomly inhomogeneous media”, Physics-Uspekhi, 25, 494–508 (1982)

  12. I. A. Razenkov, “Turbulent lidar: I—Design,” Atmos. Ocean. Opt. 31 (3), 273–280 (2018).

    Article  Google Scholar 

  13. I. A. Razenkov, “Turbulent lidar: II—Experiment,” Atmos. Ocean. Opt. 31 (3) 281–289 (2018).

    Article  Google Scholar 

  14. I. A. Razenkov, “Estimation of the turbulence intensity from lidar data,” Atmos. Ocean. Opt. 33 (3), 245–253 (2020).

    Article  Google Scholar 

  15. V. A. Banakh and I. A. Razenkov, “Refractive Turbulence Strength Estimation Based on the Laser Echo Signal Amplification Effect,” Opt. Lett. 41 (2016).

  16. I. A. Razenkov, “Optimization of parameters of a turbulent lidar,” Atmos. Ocean. Opt. 32 (3), 349–360 (2019).

    Article  Google Scholar 

  17. V. A. Banakh, A. V. Falits, and I. V. Zaloznaya, “Amplification of the mean power of the echo signal of a spatially limited laser beam in a turbulent atmosphere,” Opt. Atmos. Okeana 32 (5), 371–375 (2019).

    Article  Google Scholar 

  18. V. V. Vorob’ev, “On the applicability of asymptotic formulas of retrieving "optical” turbulence parameters from pulse lidar sounding data: II—Results of numerical simulation,” Atmos. Ocean. Opt. 30 (2), 162–168 (2017).

    Article  Google Scholar 

  19. A. S. Gurvich, A. I. Kon, V. L. Mironov, and S. S. Khmelevtsov, Laser Radiation in a Turbulent Atmosphere (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  20. I. A. Razenkov, V. A. Banakh, and E. V. Gorgeev, “Lidar "BSE-4" for the atmospheric turbulence measurements,” Proc. SPIE—Int. Soc. Opt. Eng. (2018). https://doi.org/10.1117/12.2505183

  21. http://attex.net/RU/index.php. Cited March 15, 2020.

Download references

ACKNOWLEDGMENTS

The author is grateful to A.P. Rostov for the advice, useful discussion of the results of the work, and the help in organizing scintilllometer measurements of the turbulence strength.

Funding

The was performed within Project of Fundamental Research of the Russian Academy of Sciences no. AAAA-A17-117021310149-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Razenkov.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razenkov, I.A. Specifics of Sounding the Atmospheric Boundary Layer with a Turbulent Lidar. Atmos Ocean Opt 33, 610–615 (2020). https://doi.org/10.1134/S1024856020060123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856020060123

Keywords:

Navigation