Skip to main content
Log in

Study of H2O Polarizability Based on Data on Rovibrational Line Shifts by Buffer Gas Pressure

  • SPECTROSCOPY OF AMBIENT MEDIUM
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The study of the vibrational dependence of H2O polarizability α is based on the comparison of experimental and calculated line shifts induced by argon, nitrogen, and air pressure in different H2O vibrational bands. The dependence of α on the internal coordinate θ, which describes large-amplitude bending vibration in the molecule, is expressed by a power series. The coefficients of the power series were selected so as to ensure the best agreement between the calculated matrix elements 〈ψn|α(θ)|ψn〉 and the polarizability values α(n) derived from the analysis of experimental H2O absorption line shifts in nν2 vibrational bands by nitrogen, oxygen, air, and argon pressure. The rotational contributions in the effective H2O polarizability are calculated and discussed. The α(θ) representation found is compared with ab initio calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. A. D. Bykov, L. N. Sinitsa, and V. I. Starikov, Experimental and Theoretical Techniques in Water Vapor Spectroscopy (Publishing House of SB RAS, Novosibirsk, 1999) [in Russian].

    Google Scholar 

  2. V. I. Starikov and Vl. G. Tyuterev, Intramolecular Interactions and Theoretical Techniques in the Spectroscopy of Non-rigid Molecules (Spektr, Tomsk, 1997) [in Russian].

  3. V. I. Starikov, “Vibration-Rotation Interaction Potential for H2O-A System,” J. Quant. Spectrosc. Radiat. Transfer 155, 49–56 (2015).

    Article  ADS  Google Scholar 

  4. S. L. Shostak and J. S. Muenter, “The dipole moment of water. ii. analysis of the vibrational dependence of the dipole moment in terms of a dipole moment function,” J. Chem. Phys. 94, 5883–5890 (1991).

    Article  ADS  Google Scholar 

  5. M. Mengel and P. Jensen, “A theoretical study of the stark effect in triatomic molecules: Application to H2O,” J. Mol. Spectrosc. 169, 73–91 (1995).

    Article  ADS  Google Scholar 

  6. Y. Luo, H. Agren, O. Vahtras, P. Jorgensen, V. Spirko, and H. Hettema, “Frequency-dependent polarizabilities and first hyperpolarizabilities of H2O,” J. Chem. Phys. 98, 7159–7164 (1993).

    Article  ADS  Google Scholar 

  7. T. M. Petrova, A. M. Solodov, A. A. Solodov, and V. I. Starikov, “Measurements and calculations of Ar-broadening and -shifting parameters of the water vapor transitions in the wide spectral region,” Mol. Phys. 115, 1642–1656 (2017).

    Article  ADS  Google Scholar 

  8. V. I. Starikov, T. M. Petrova, A. M. Solodov, A. A. Solodov, and V. M. Deichuli, “Study of the H2O dipole moment and polarizability vibrational dependence by the analysis of rovibrational line shifts,” Spectochimica Acta. A 210, 275–280 (2019).

    Article  ADS  Google Scholar 

  9. V. I. Starikov and A. E. Protasevich, “Effective polarizability operator for X2Y-type molecules. Application to line width and line shift calculations of H2O,” J. Mol. Struct. 646, 81–88 (2003).

    Article  ADS  Google Scholar 

  10. A. R. Hoy, I. M. Mills, and G. Strey, “Anharmonic force constant calculations,” Mol. Phys. 24, 1265–1290 (1972).

    Article  ADS  Google Scholar 

  11. W. F. Murphy, “The ro-vibrational raman spectrum of water vapour ν2 and 2ν2,” Mol. Phys. 33, 1701–1714 (1977).

    Article  ADS  Google Scholar 

  12. W. F. Murphy, “The ro-vibrational Raman spectrum of water vapour ν1 and ν3,” Mol. Phys. 36, 727–732 (1978).

    Article  ADS  Google Scholar 

  13. G. Avila, J. M. Fernandez, B. Mate, G. Tejeda, and S. Montero, “Ro-vibrational raman cross sections of water vapor in the OH stretching region,” J. Mol. Spectrosc. 196, 77–92 (1999).

    Article  ADS  Google Scholar 

  14. G. Avila, G. Tejeda, J. M. Fernandez, and S. Montero, “The Raman spectra and cross sections of the ν2 band of H2O, D2O, and HDO,” J. Mol. Spectrosc. 223, 166–180 (2004).

    Article  ADS  Google Scholar 

  15. G. Avila, G. Tejeda, J. M. Fernandez, and S. Montero, “The rotational Raman spectra and cross sections of H2O, D2O, and HDO,” J. Mol. Spectrosc. 220, 259–275 (2003).

    Article  ADS  Google Scholar 

  16. G. Avila, “Ab initio dipole polarizability surfaces of water molecule: static and dynamic at 514.5 nm,” J. Chem. Phys. 122, 144310 (2005).

    Article  ADS  Google Scholar 

  17. O. Loboda, F. Ingrosso, M. F. Ruiz-Lopez, H. Reis, and C. Millot, “Dipole and quadrupole polarizabilities of the water molecule as a function of geometry,” J. Comput. Chem. 37, 2125–2132 (2016).

    Article  Google Scholar 

  18. J. T. Hougen, P. R. Bunker, and J. W. G. Johns, “The vibration-rotation problem in triatimic molecules for a large-amplitude bending vibration,” J. Mol. Spectrosc. 34, 136–172 (1970).

    Article  ADS  Google Scholar 

  19. V. I. Starikov, “ν2-dependences of the rotational contributions to the effective dipole moment of the H2O molecule and their effect on the broadening and shift of lines induced by the pressure of buffer gases,” Opt. Spectrosc. 127 (2), 200–206 (2019).

    Article  ADS  Google Scholar 

  20. Yu. S. Makushkin and Vl. G. Tyuterev, Perturbation Theory Methods and Effective Hamiltonians in the Molecular Spectroscopy (Nauka, Novosibirsk, 1984) [in Russian].

  21. D. Robert and J. Bonamy, “Short range force effects in semiclassical molecular line broadening calculations,” J. Phys. (Paris) 40, 923–943 (1979).

    Article  Google Scholar 

  22. R. P. Leavitt, “Pressure broadening and shifting in microwave and infrared spectra of molecules of arbitrary symmetry: An irreducible tensor approach,” J. Chem. Phys. 73 (11), 5432–5450 (1980).

    Article  ADS  Google Scholar 

  23. V. I. Starikov and N. N. Lavrent’eva, Collisional Broadening of Spectral Lines of Absorption of Molecular Atmospheric Gases (Publishing House of IAO SB RAS, Tomsk: 2006) [in Russian].

    Google Scholar 

  24. N. Schmucker, Ch. Trojan, T. Giesen, R. Schielder, K. M. T. Yamada, and G. Winnewisser, “Pressure broadening and shift of some H2O lines in the ν2 |band: Revisited,” J. Mol. Spectrosc. 184, 250–256 (1997).

    Article  ADS  Google Scholar 

  25. R. A. Toth, “Measurements and analysis (using empirical functions for widths) of air- and self-broadening parameters of H2O,” J. Quant. Spectrosc. Radiat. Transfer 94, 1–50 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Starikov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starikov, V.I. Study of H2O Polarizability Based on Data on Rovibrational Line Shifts by Buffer Gas Pressure. Atmos Ocean Opt 33, 324–331 (2020). https://doi.org/10.1134/S102485602004017X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485602004017X

Keywords:

Navigation