Skip to main content
Log in

Application of Atmospheric Chemical Transport Models to Validation of Pollutant Emissions in Moscow

  • ATMOSPHERIC RADIATION, OPTICAL WEATHER, AND CLIMATE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Data of multiyear observations from Mosecomonitoring network stations were used to calculate the CO, NO, NO2, SO2, and PM10 emissions from urban sources, their spatial distribution, and time variations. The emission matrix thus obtained was used in the SILAM chemical transport model to estimate the air quality in the Moscow megacity. The comparisons of the calculations with the observations, performed by applying correlation relations and Student’s test, were used to correct the emission matrix. To optimize the spatial distribution of sources and the magnitude of emissions in the Moscow megacity, air pollutant fields for the summer and winter months were calculated applying chemical transport models SILAM and COSMO-ART using emissions both calculated and available from the TNO emission inventory database. Comparison of these calculations made it possible to reduce the uncertainties of estimating the air quality in the Moscow region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. N. F. Elansky, “Air quality and CO emissions in the Moscow megacity,” Urban Clim. 8, 42–56 (2014).

    Article  Google Scholar 

  2. G. I. Gorchakov, M. A. Sviridenkov, E. G. Semutnikova, N. E. Chubarova, B. N. Kholben, A. V. Smirnov, A. S. Emilenko, A. A. Isakov, V. M. Kopeikin, A. V. Karpov, E. A. Lezina, and O. S. Zadorozhnaya, “Optical and microphysical parameters of the aerosol in the smoky atmosphere of the Moscow region in 2010,” Dokl. Eqarth Sci. 437 (2), 513–517 (2011).

    Article  ADS  Google Scholar 

  3. E. N. Kadygrov and I. N. Kuznetsova, Recommended Practice for the Use of Remote Temperature Profiling with MW Profilers in the Atmospheric Boundary Layer: Theory and Practice (Fizmatkniga, Dolgoprudnyi, 2015) [in Russian].

  4. N. F. Elansky, N. A. Ponomarev, and Y. M. Verevkin, “Air quality and pollutant emissions in the Moscow megacity in 2005–2014,” Atmos. Environ. 175, 54–64 (2018).

    Article  ADS  Google Scholar 

  5. M. I. Nakhaev, E. V. Berezin, I. Yu. Shalygina, I. N. Kuznetsova, I. B. Konovalov, D. V. Blinov, and E. A. Lezina, “Pilot calculations of PM10 and CO concentrations with complex models CHIMERE and COSMO-Ru7,” Opt. Atmos. Okeana. 28 (6), 569–578 (2015).

    Google Scholar 

  6. R. B. Zaripov, I. B. Konovalov, I. N. Kuznetsova, I. B. Belikov, and A. M. Zvyagintsev, “WRF ARW and CHIMERE models for numerical forecasting of surface ozone concentration” Rus. Meteorol. Hydrol. 36 (4), 249–257 (2011).

    Article  Google Scholar 

  7. R. M. Vil’fand, A. A. Kirsanov, G. S. Rivin, A. P. Revokatova, and G. V. Surkova, “Forecasting the transport and transformation of atmospheric pollutants with the COSMO-ART model,” Rus. Meteorol. Hydrol. 42 (5), 292–298 (2017).

    Article  Google Scholar 

  8. A. P. Revokatova, A. V. Kislov, G. V. Surkova, A. A. Kirsanov, G. S. Rivin, B. Vogel, and H. Vogel, “Short-term forecast of the carbon monoxide concentration over the Moscow region by COSMO-ART,” Pure Appl. Geophys. 176 (2), 885–899 (2019).

    Article  ADS  Google Scholar 

  9. N. F. Elanskii, M. A. Lokoshchenko, A. V. Trifanova, I. B. Belikov, and A. I. Skorokhod, “On contents of trace gases in the atmospheric surface layer over Moscow,” Izv. Atmos. Ocean. Phys. 51 (1), 30–41 (2015).

    Article  Google Scholar 

  10. A. A. Kirsanov, U. V. Kostrova, A. P. Revokatova, G. S. Rivin, and G. V. Surkova, “Forecast of atmospheric pollutant concentrations by COSMO-Ru-ART,” in Turbulence and Dynamics of the Atmosphere and Climate (Fizmatkniga, Moscow, 2018), p. 356–362 [in Russian]

    Google Scholar 

  11. M. Sofiev, “Extended resistance analogy for construction of the vertical diffusion scheme for dispersion models,” J. Geophys. Res.: Atmos. 107, ACH 10-1–10-8 (2002).

  12. M. Sofiev, “A model for the evaluation of long-term airborne pollution transport at regional and continental scales,” Atmos. Environ. 34, 2481–2493 (2000).

    Article  ADS  Google Scholar 

  13. M. Gery, G. Whitten, J. Killus, and M. Dodge, “A photochemical kinetics mechanism for urban and regional scale computer modeling,” J. Geophys. Res. 94 (10), 12925–12956 (1989).

    Article  ADS  Google Scholar 

  14. EMEP/EEA Air Pollutant Emission Inventory Guidebook (2016). https://doi.org/10.2800/247535

  15. H. A. C. van der Gon, J. Kuenen, and T. Butler, http://megapoli.dmi.dk/publ/MEGAPOLI_sr10-13.pdf. Cited June 10, 2019.

  16. J. Kuenen, H. A. C. Denier van der Gon, A. Visschedijk, H. van der Brugh, S. Finardi, P. Radice, A. D’Allura, S. Beevers, J. Theloke, M. Uzbasich, C. Honore, and O. Perrussel, MEGAPOLI Scientific Report 10-17. A Base Year (2005) MEGAPOLI European Gridded Emission Inventory (Final Version) (Utrecht, Netherlands, 2010).

  17. T. M. Butler, M. G. Lowrence, B. R. Gurjar, J. van Aardenne, M. Schultz, and J. Lelieveld, “The representation of emission from megacities in global emission inventories,” Atmos. Environ. 42, 703–719 (2008).

    Article  ADS  Google Scholar 

  18. W. Stremme, M. Grutter, C. Rivera, A. Bezanilla, A. R. Garcia, I. Ortega, M. George, C. Clerbaux, P.‑F. Coheur, D. Hurtmans, J. W. Hannigan, and M. T. Coffey, “Top-down estimation of carbon monoxide emissions from the Mexico megacity based on FTIR measurements from ground and space,” Atmos. Chem. Phys. 13, 1357–1376 (2013).

    Article  ADS  Google Scholar 

  19. N. A. Ponomarev, N. F. Elanskii, V. I. Zakharov, and Ya. M. Verevkin, “Optimization of pollutant emissions for air quality modeling in Moscow,” Protsessy Geosredakh, No. 1, 65–73 (2019).

    Google Scholar 

  20. N. F. Elanskii, I. I. Mokhov, I. B. Belikov, E. V. Berezina, A. S. Elokhov, V. A. Ivanov, N. V. Pankratova, O. V. Postylyakov, A. N. Safronov, A. I. Skorokhod, and R. A. Shumskii, “Gaseous admixtures in the atmosphere over Moscow during the 2010 summer,” Izv. Atmos. Ocean. Phys. 47 (6), 672–681 (2011).

    Article  Google Scholar 

  21. M. Dorninger, E. Gilleland, B. Casati, M. Mittermaier, E. Ebert, B. Brown, and L. Wilson, “The set-up of the MesoVICT project,” Bull. Am. Meteorol. Soc. (2018). https://doi.org/10.1175/BAMS-D-17-0164.1

  22. T. Pierce, C. Hogrefe, S. T. Rao, P. S. Porter, and J.‑Y. Ku, “Dynamic evaluation of a regional air quality model: Assessing the emissions-induced weekly ozone cycle,” Atmos. Environ. 44, 3583–3596 (2010).

    Article  ADS  Google Scholar 

  23. N. F. Elanskii, A. V. Shilkin, E. G. Semutnikova, P. V. Zakharova, V. S. Rakitin, N. A. Ponomarev, and Ya. M. Verevkin, “Weekly cycle of pollutant concentrations in near-surface air over Moscow,” Atmos. Ocean. Opt. 32 (1), 85–93 (2019).

    Article  Google Scholar 

  24. P. I. Palmer, D. J. Jacob, A. M. Fiore, R. V. Martin, K. Chanc, and T. P. Kurosu, “Mapping isoprene emissions over North America using formaldehyde column observations from space,” J. Geophys. Res. D 108 (6), 41–80 (2003).

    Google Scholar 

  25. A. Jericevic, L. Kraljevic, B. Grisogono, H. Fagerli, and Z. Vecenaj, “Parameterization of vertical diffusion and the atmospheric boundary layer height determination in the EMEP model,” Atmos. Chem. Phys. 10, 341–364 (2010).

    Article  ADS  Google Scholar 

  26. N. F. Elanskii, O. V. Lavrova, A. A. Rakin, and A. I. Skorokhod, “Anthropogenic disturbances of the atmosphere in Moscow region, Dokl. Earth Sci. 454 (2), 158–162 (2014).

    Article  ADS  Google Scholar 

  27. A. Borovski, E. Grechko, A. Djola, A. Elokhov, O. Postylyakov, and Y. Kanaya, “First measurements of formaldehyde integral content at Zvenigorod Scientific Station,” Int. J. Remote Sens. 35 (15), 5609–5627 (2014).

    Google Scholar 

  28. A. N. Gruzdev and A. S. Elokhov, “Variability of stratospheric and tropospheric nitrogen dioxide observed by the visible spectrophotometer at Zvenigorod, Russia,” Internat. J. Remote Sens. 32 (11), 3115–3127 (2011).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank R. Kuznetsov and M. Sofiev for providing the original code of SILAM model, data on the boundary and initial conditions, as well as for valuable advice and assistance in conducting numerical experiments; we also acknowledge the support from B. Vogel, H. Vogel, and their colleagues from Karlsruhe Institute of Technology (Germany) for useful suggestions and valuable guidance on using the ART module, H.D. van der Gon and his colleagues from Netherlands Organization for Applied Scientific Research (TNO) for providing emission data, and D. Brunner from Swiss Federal Laboratories for Materials Science and Technology (EMPA), who converted these annual data to hourly data on the COSMO-ART grid. We also thank MEM staff for providing the great number of observations without which this work could hardly be possible.

Funding

This work was supported by the Russian Science Foundation (project no. 16-17-10 275) and the Russian Foundation for Basic Research (project no. 19-05-00352). The procedures for analyzing the data quality were developed under the support from the Russian Foundation for Basic Research (project no. 17-35-05102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Ponomarev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomarev, N.A., Elansky, N.F., Kirsanov, A.A. et al. Application of Atmospheric Chemical Transport Models to Validation of Pollutant Emissions in Moscow. Atmos Ocean Opt 33, 362–371 (2020). https://doi.org/10.1134/S1024856020040090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856020040090

Keywords:

Navigation