Skip to main content
Log in

Remote Analysis of Methane Concentration in the Atmosphere with an IR Lidar System in the 3300–3430 nm Spectral Range

  • REMOTE SENSING OF ATMOSPHERE, HYDROSPHERE, AND UNDERLYING SURFACE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

A differential absorption lidar (DIAL) system based on optical parametric oscillators (OPO) with nonlinear KTA and KTP crystals is designed. The crystals allow laser radiation tuning in the IR wavelength region. A series of experiments on remote monitoring of methane along a horizontal surface sounding path in the 3300–3430 nm spectral range was carried out. Based on the experimental results, the CH4 concentrations are retrieved along a surface 800-m path in the spectral range under study with a spatial resolution of 100 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. T. Reghunath, P. Malhotra, Y. Kumar, and B. Bhushan, “Design of a tunable mid-IR OPO source for DIAL detection of trace gases,” Proc. SPIE—Int. Soc. Opt. Eng. 6409, 64091 (2006).

  2. K. O. Douglass, S. E. Maxwell, D. F. Plusquellic, J. T. Hodges, R. D. van Zee, D. V. Samarov, and J. R. Whetstone, “Construction of a high power OPO laser system for differential absorption LIDAR,” Proc. SPIE—Int. Soc. Opt. Eng. 8159, 81590 (2011).

  3. J. Barrientos-Barria, J. Dherbecourt, M. Raybaut, A. Godard, J. M. Melkonian, M. H. Lefebvre, B. Faure, and G. Souhaite, “3.3–3.7 μm nested cavity OPO pumped by an amplified micro-laser for portable DIA-L,” in 2013 Conference on Lasers & Electro-Optics & International Quantum Electronics Conference CLEO EUROPE/IQEC (IEEE, 2014), p. 978-1-4799-0594-2. https://doi.org/10.1109/CLEOE-IQEC.2013.6800859

  4. S. Amoruso, A. Amodeo, M. Armenante, A. Boselli, L. Mona, M. Pandolfi, G. Pappalardo, R. Velotta, N. Spinelli, and X. Wang, “Development of a tunable IR lidar system,” Opt. Laser Eng. 37 (5), 521–532 (2002).

    Article  Google Scholar 

  5. V. S. Airapetyan, ”Measurement of atmospheric methane absorption spectra by lidar station with tunable emission wavelength in 1.41–4.24 μm range,” Zh. Prikl. Spektrosk. 76 (2), 285–290 (2009).

    Google Scholar 

  6. V. S. Airapetyan, ”Continuously and (or) discretely tunable optical parametric oscillator,” Atmos. Ocean. Opt. 21 (10), 791–794 (2008).

    Google Scholar 

  7. A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92 (2), 295–302 (2008).

    Article  ADS  Google Scholar 

  8. J. Barrientos-Barria, A. A. Dobroc, H. Coudert-Alteirac, M. Raybaut, N. Cezard, J.-P. Dherbecourt, B. Faure, G. Souhaite, J.-M. Melkonian, A. Godard, M. Lefebvre, and J. Pelon, “3.3–3.7 μm OPO/OPA optical source for multi-species 200 m range integrated path differential absorption lidar,” in Applications of Lasers for Sensing and Free Space Communications (Opt. Soc. Am, 2013).

  9. D. Mammez, E. Cadiou, J.-P. Dherbecourt, M. Raybaut, J.-M. Melkonian, A. Godard, G. Gorju, J. Pelon, and M. Lefebvre, “Multispecies transmitter for DIAL sensing of atmospheric water vapour, methane and carbon dioxide in the 2 μm region,” Proc. SPIE—Int. Soc. Opt. Eng. 9645, 964507–1 (2015).

  10. I. Robinson, J. W. Jack, C. F. Rae, and J. B. Moncrieff, “Development of a laser for differential absorption lidar measurement of atmospheric carbon dioxide,” Proc. SPIE—Int. Soc. Opt. Eng. 9246, 92460 (2014).

  11. I. Robinson, J. W. Jack, C. F. Rae, and J. B. Moncrieff, “A robust optical parametric oscillator and receiver telescope for differential absorption lidar of greenhouse gases,” Proc. SPIE—Int. Soc. Opt. Eng. 9645, 96450 (2015).

  12. V. Mitev, S. Babichenko, R. Borelli, L. Fiorani, I. Grigorov, M. Nuvoli, A. Palucci, M. Pistilli, Ad. Puiu, O. Rebane, and S. Santoro, “Lidar extinction measurement in the mid-infrared,” Proc. SPIE—Int. Soc. Opt. Eng. 9292, 92923 (2014).

  13. A. R. Geiger, US Patent No. 5 250 810 (5 October 1993).

  14. H. M. Kalayeh, US Patent No. 7411196 (22 October 2007).

  15. J. Liu, US Patent No. 8 541 744 (24 September 2013).

  16. R. Foltynowicz, US Patent No. 8 837 538 (31 January 2013).

  17. V. S. Airapetyan, “Laser based remote sensing of explosives by the method of differential absorption and scattering,” Zh. Prikl. Spektrosk. 84 (6), 987–992 (2017).

    Google Scholar 

  18. V. S. Ayrapetyan and P. A. Fomin, “Laser detection of explosives based on differential absorption and scattering,” Opt. Laser Technol. 106, 202–208 (2018).

    Article  ADS  Google Scholar 

  19. S. Veerabuthiran, A. K. Razdan, M. K. Jindal, R. K. Sharma, and Vikas Sagar, “Development of 3.0–3.45 μm OPO laser based range resolved and hard-target differential absorption lidar for sensing of atmospheric methane,” Opt. Laser Technol. 73, 1–5 (2015).

    Article  ADS  Google Scholar 

  20. V. Mitev, S. Babichenko, J. Bennes, R. Borelli, A. Dolfi-Bouteyre, L. Fiorani, L. Hespel, T. Huet, A. Palucci, M. Pistilli, A. Puiu, O. Rebane, and I. Sobolev, “Mid-IR DIAL for high-resolution mapping of explosive precursors,” Proc. SPIE—Int. Soc. Opt. Eng. 8894, 88940 (2013).

  21. E. Cadiou, D. Mammez, J.-B. Dherbecourt, G. Gorju, J. Pelon, J.-M. Melkonian, A. Godard, and M. Raybaut, “Atmospheric boundary layer CO2 remote sensing with a direct detection LIDAR instrument based on a widely tunable optical parametric source,” Opt. Lett. 42 (5), 4044–4047 (2017).

    Article  ADS  Google Scholar 

  22. Y. Shibata, C. Nagasawa, and M. Abo, “Development of 1.6 μm DIAL using an OPG/OPA transmitter for measuring atmospheric CO2 concentration profiles,” Appl. Opt. 56 (4), 1194–1201 (2017).

    Article  ADS  Google Scholar 

  23. O. A. Romanovskii, S. A. Sadovnikov, O. V. Kharchenko, and S. V. Yakovlev, “Broadband IR lidar for gas analysis of the atmosphere,” J. Appl. Spectrosc. 85 (3), 457–461 (2018).

    Article  ADS  Google Scholar 

  24. G. G. Matvienko, O. A. Romanovskii, S. A. Sadovnikov, A. Ya. Sukhanov, O. V. Kharchenko, and S. V. Yakovlev, “Optical parametric oscillator in lidar sensing of atmospheric gases in the 3–4 μm spectral range,” Opt. Atmos. Okeana. 30 (7), 598–604 (2017).

    Google Scholar 

  25. G. G. Matvienko, O. A. Romanovskii, S. A. Sadovnikov, A. Ya. Sukhanov, O. V. Kharchenko, and S. V. Yakovlev, “Study of the possibility of using a parametric-light-generator-based laser system for lidar probing of the composition of the atmosphere,” J. Opt. Technol. 84 (6), 408–414 (2017).

    Article  Google Scholar 

  26. O. A. Romanovskii, S. A. Sadovnikov, O. V. Kharchenko, and S. V. Yakovlev, “Development of near/mid IR differential absorption OPO lidar system for sensing of atmospheric gases,” Opt. Laser Technol. 116, 43–47 (2019).

    Article  ADS  Google Scholar 

  27. O. A. Romanovskii, S. A. Sadovnikov, O. V. Kharchenko, and S. V. Yakovlev, “Near/mid-IR OPO lidar system for gas analysis of the atmosphere: Simulation and measurement results,” Optical Memory & Neural Networks 28 (1), 1–10 (2019).

    Article  Google Scholar 

  28. I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Csaszar, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Auwera, Wagner G. Vander, J. Wilzewski, P. Wcislo, S. Yu, and E. J. Zak, “The HITR-AN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).

    Article  ADS  Google Scholar 

  29. http://lop.iao.ru/EN/tor/gas/. Cited February 1, 2019.

  30. D. K. Davydov, B. D. Belan, P. N. Antokhin, O. Yu. Antokhina, V. V. Antonovich, V. G. Arshinova, M. Yu. Arshinov, A. Yu. Akhlestin, S. B. Belan, N. V. Dudorova, G. A. Ivlev, A. V. Kozlov, D. A. Pestunov, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, A. Z. Fazliev, and A. V. Fofonov, “Monitoring of atmospheric parameters: 25 years of the tropospheric ozone research station of the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences,” Atmos. Ocean. Opt. 32 (2), 180–192 (2019).

    Article  Google Scholar 

Download references

Funding

The work was financially supported by the President of the Russian Federation (grant no. MK-932.2019.8) in the part of the design of the lidar system for methane concentration measurements in the real atmosphere and by the Russian Foundation for Basic Research (grant no. 19-45-700 003) regarding laboratory measurements of OPO laser radiation absorption by methane in the informative sounding range.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. A. Romanovskii or S. V. Yakovlev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanovskii, O.A., Sadovnikov, S.A., Kharchenko, O.V. et al. Remote Analysis of Methane Concentration in the Atmosphere with an IR Lidar System in the 3300–3430 nm Spectral Range. Atmos Ocean Opt 33, 188–194 (2020). https://doi.org/10.1134/S1024856020020074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856020020074

Keywords:

Navigation