Skip to main content
Log in

Vavilov–Cherenkov Radiation in the Region 200–300 nm in the Earth’s Atmosphere

  • ATMOSPHERIC RADIATION, OPTICAL WEATHER, AND CLIMATE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The results of the study of the radiation spectra of the Earth’s atmosphere in the ultraviolet (UV) and visible spectral regions are presented. The input window of the spectrometer was directed to the Sun or located at different angles to the axis through the solar disk center. The Vavilov–Cherenkov (VCh) radiation spectrum was recorded with a standard spectrometer in the region 200–300 nm for the first time. The threshold electron energy for VCh radiation excitation in air and the maximal angle of VCh radiation propagation with respect to the electron motion direction are calculated. The VCh radiation is assumed to be excited when high-energy solar wind particles are braking in the Earth’s atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Handbook of Geophysics and Space Environments, Ed. by S. L. Valley (McGraw-Hill, New York, 1965).

    Google Scholar 

  2. S. I. Akasofu and S. Chapman, Solar-Terrestrial Physics (The Clarendon press, Oxford, 1972).

    Google Scholar 

  3. V. V. Chukin, Electromagnetic Examination of the Atmosphere (RGGMU, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  4. N. N. Shefov, A. I. Semenov, and V. Yu. Khomich, Radiation of the Upper Atmosphere as an Indicator of its Structure and Dynamics (GEOS, Moscow, 2006) [in Rusian].

    Google Scholar 

  5. S. M. Kolomiets, “Vertical ionospheric sounding using the artificial Earth satellites with the passive response,” Issled. Oblasti Estestv. Nauk, No. 11 (2014).

  6. M. A. Tashchilin and A. V. Mikhalev, “Springtime feature of the seasonal behavior of near-ground ultraviolet radiation in certain regions of Russia,” Atmos. Ocean. Opt. 23 (4), 303–308 (2010).

    Article  Google Scholar 

  7. N. E. Chubarova, Yu. M. Timofeev, Ya. A. Virolainen, and A. V. Polyakov, “Estimates of UV indices during the periods of reduced ozone content over Siberia in winter-spring 2016,” Atmos. Ocean. Opt. 32 (2), 177–179 (2019).

    Article  Google Scholar 

  8. V. P. Zrelov, Vavilov–Cherenkov Radiation and Its Use in High Energy Physics. Vol. 1 (Atomizdat, Moscow, 1968) [in Russian].

    Google Scholar 

  9. L. D. Landau and E. M. Lifshits, Theoretical Physics. Vol. 8 (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  10. D. A. Sorokin, A. G. Burachenko, D. V. Beloplotov, V. F. Tarasenko, E. Kh. Baksht, E. I. Lipatov, and M. I. Lomaev, “Luminescence of crystals excited by a runaway electron beam and by excilamp radiation with a peak wavelength of 222 nm,” J. Appl. Phys. 122, 093304 (2017).

    Article  Google Scholar 

  11. Y. Tsunesada, R. Katsuya, Y. Mitsumori, K. Nakayama, F. Kakimoto, H. Tokuno, N. Tajima, P. Miranda, J. Salinas, and W. Tavera, “New air Cherenkov light detectors to study mass composition of cosmic rays with energies above knee region,” Nucl. Instrum. Methods Phys. Res. A 763, 320–328 (2014).

    Article  ADS  Google Scholar 

  12. J. M. Clem, P. Niessen, and S. Stoyanov, “Response of IceTop tanks to low-energy particles,” in Proc. 30th Intern. Cosmic Ray Conf. (Mexico City, 2008), Vol. 1(SH), p. 237–240.

  13. K. D. De Vries, A. M. Berg, O. Scholten, and K. Werner, “Coherent Cherenkov radiation from cosmic-ray-induced air showers,” Phys. Rev. Lett. 107, 061101 (2011).

    Article  ADS  Google Scholar 

  14. F. Bagnato, A. Romano, P. Buratti, A. Doria, L. Gabellieri, E. Giovenale, and M. Rabinski, “Triple Cherenkov probe measurements on FTU: Calibration and runaway energy spectra,” Plasma Phys. Controlled Fusion 60 (11), 115010 (2018).

    Article  ADS  Google Scholar 

  15. E. I. Lipatov, D. E. Genin, D. V. Grigor’ev, V. F. Tarasenko, A. G. Burachenko, E. Kh. Baksht, and D. V. Beloplotov, “Applied optical properties of diamond,” AIP Conf. Proc. 2069, 040007(1–8) (2019).

  16. V. F. Tarasenko, M. I. Lomaev, E. Kh. Baksht, D. V. Beloplotov, A. G. Burachenko, D. A. Sorokin, and E. I. Lipatov, “Spectral and amplitude-time characteristics of crystals excited by a runaway electron beam,” Matter Radiat. Extremes 4, 037401 (2019).

    Article  Google Scholar 

  17. E. Kh. Baksht, A. V. Vukolov, M. V. Erofeev, G. A. Naumenko, A. P. Potylitsyn, V. F. Tarasenko, A. G. Burachenko, and M. V. Shevelev, “Cherenkov radiation in the visible and ultraviolet spectral ranges from 6-MeV electrons passing through a quartz plate,” JETP Lett. 109 (9), 564–568 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation (project no. 18-19-00184).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. I. Lipatov or V. F. Tarasenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipatov, E.I., Tarasenko, V.F., Erofeev, M.V. et al. Vavilov–Cherenkov Radiation in the Region 200–300 nm in the Earth’s Atmosphere. Atmos Ocean Opt 33, 195–197 (2020). https://doi.org/10.1134/S1024856020020049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856020020049

Keywords:

Navigation