Skip to main content
Log in

Development of Algorithms for Atmospheric Methane Distribution Retrieval from METOP/IASI Spectra

  • Optical Instrumentation
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The applicability of the Levenberg–Marquardt method, modified for the case of inaccessibility of a priori covariance matrices for methane vertical profiles, to atmospheric methane total column retrieval from the spectra measured by METOP/IASI is studied. The method and algorithm are software implemented together with an iterative evaluation of a posteriori covariance matrices and averaging kernels for each individual case of retrieval. This allows selection of the results based on properties of both matrices. The comparison between our results and IASI standard methane products retrieved from the same spectra shows their satisfactory agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ya. Kondrat’ev, “Global climate change: Unsolved problems,” Meteorol. Gidrol., No. 6, 118–128 (2004).

    Google Scholar 

  2. S. M. Semenov, Greenhouse Gases and Modern Earth’s Climate (Meteorol. i Gidrol., Moscow, 2004) [in Russian].

    Google Scholar 

  3. Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (Cambridge University Press, New York, 2014).

  4. WMO Greenhouse Gas Bulletin (2016), No 12, p. 6.

  5. M. V. Makarova, N. M. Gavrilov, Yu. M. Timofeev, and A. V. Poberovskii, “Comparison between satellite (GOSAT) and gounf-based Fourier-spectrometer measurements of methane content near St. Petersburg,” Issled. Zemli Kosmosa, No. 6, 50–56 (2013).

    Google Scholar 

  6. K. G. Gribanov, R. Imasu, A. Yu. Toptygin, V. Bloiten, A. V. Naumov, and V. I. Zakharov, “Method and results of retrieval of the methane content in the atmosphere of Western Siberia from AIRS data,” Atmos. Ocean. Opt. 20 (10), 805–809 (2007).

    Google Scholar 

  7. S. Turquety, J. Hadji-Lazaro, C. Clerbaux, D. A. Hauglustaine, S. A. Clough, V. Casse, P. Schlussel, and G. Megie, “Operational trace gas retrieval algorithm for the infrared atmospheric sounding interferometer,” J. Geophys. Res., D 109 (21) (2004). doi 10.1029/2004JD004821

    Google Scholar 

  8. A. B. Uspenskii, A. V. Kukharskii, S. V. Romanov, and A. N. Rublev, “Monitoring of carbon dioxide and the total methane content in the troposphere over Siberia from AIRS and IASI IR sounding data,” Issled. Zemli Kosmosa, No. 1, 14–21 (2011).

    Google Scholar 

  9. O. M. Pokrovskii and Yu. M. Timofeev, “General statistical approach to the solution of inverse problems of atmospheric optics,” Meteorol. Gidrol., No. 1, 52–59 (1972).

    Google Scholar 

  10. C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys., No. 14, 609 (1976).

    Article  ADS  Google Scholar 

  11. T. Steck, “Methods for determining regularization for atmospheric retrieval problems,” Appl. Opt. 41 (9), 1788–1797 (2002).

    Article  ADS  Google Scholar 

  12. T. Steck and T. von Clarmann, “Constrained profile retrieval applied to the observation mode of the michelson interferometer for passive atmospheric sounding,” Appl. Opt. 40, 3559–3571 (2001).

    Article  ADS  Google Scholar 

  13. S. Ceccherini and M. Ridolfi, “Variance-covariance matrix and averaging kernels for the Levenberg–Marquardt solution of the retrieval of atmospheric vertical profiles,” Atmos. Chem. Phys. 10, 3131–3139 (2010).

    Article  ADS  Google Scholar 

  14. S. Noel, K. Bramstedt, M. Hilker, P. Liebing, J. Plieninger, M. Reuter, A. Rozanov, H. Bovensmann, and J. P. Burrows, “Stratospheric CH4 and CO2 profiles derived from SCIAMACHY solar occultation measurements,” Atmos. Meas. Tech. Discuss. 8 (11), 11467–11511 (2015).

    Article  Google Scholar 

  15. M. Alexe, P. Bergamaschi, A. Segers, R. Detmers, A. Butz, O. Hasekamp, S. Guerlet, R. Parker, H. Boesch, C. Frankenberg, R. A. Scheepmaker, E. Dlugokencky, C. Sweeney, S. C. Wofsy, and E. A. Kort, “Inverse modelling of CH4 emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY,” Atmos. Chem. Phys. 15, 113–133 (2015).

    Article  ADS  Google Scholar 

  16. C. Frankenberg, U. Platt, and T. Wagner, “Retrieval of CO from SCIAMACHY onboard ENVISAT: Detection of strongly polluted areas and seasonal patterns in global CO abundances,” Atmos. Chem. Phys. 5, 1639–1644 (2005).

    Article  ADS  Google Scholar 

  17. N. Eguchi, R. Saito, T. Saeki, Y. Nakatsuka, D. Belikov, and S. Maksyutov, “A priori covariance estimation for CO2 and CH4 retrievals,” J. Geophys. Res., D 115, 10215 (2010).

    Article  ADS  Google Scholar 

  18. T. Saeki, R. Saito, D. Belikov, and S. Maksyutov, “Global high-resolution simulations of CO2 and CH4 using a NIES transport model to produce a priori concentrations for use in satellite data retrievals,” Geosci. Model Dev. 6, 81–100 (2013).

    Article  ADS  Google Scholar 

  19. C. Ma and L. Jiang, “Some research on Levenberg–Marquardt method for the nonlinear equations,” Appl. Math. Comput. 184, 1032–1040 (2007).

    MathSciNet  MATH  Google Scholar 

  20. C. Crevoisier, D. Nobileau, A. Fiore, R. Armante, A. Chedin, and N. A. Scott, “Tropospheric methane in the tropics—First year from IASI hyperspectral infrared observations,” Atmos. Chem. Phys. 9, 6337–6350 (2009).

    Article  ADS  Google Scholar 

  21. A. B. Uspenskii and A. N. Rublev, “Current status and prospects of hyperspectral satellite atmospheric sounding,” Issled. Zemli Kosmosa, No. 6, 4–15 (2013).

    Google Scholar 

  22. M. Pommier, C. Clerbaux, K. S. Law, G. Ancellet, P. Bernath, P.-F. Coheur, J. Hadji-Lazaro, D. Hurtmans, P. Nedelec, J.-D. Paris, F. Ravetta, T. B. Ryerson, H. Schlager, and A. J. Weinheimer, “Analysis of IASI tropospheric O3 data over the Arctic during POLARCAT campaigns in 2008,” Atmos. Chem. Phys. 12, 7371–7389 (2012).

    Article  ADS  Google Scholar 

  23. M. Yu. Arshinov, S. V. Afonin, B. D. Belan, V. V. Belov, Yu. V. Gridnev, D. K. Davydov, T. Machida, Ph. Nédélec, J.-D. Paris, and A. V. Fofonov, “Comparison of satellite and aircraft measurements of gas composition in troposphere above the South of West Siberia,” Opt. Atmos. Okeana 26 (9), 773–782 (2013).

    Google Scholar 

  24. M. Yu. Arshinov, S. V. Afonin, B. D. Belan, V. V. Belov, Yu. V. Gridnev, D. K. Davydov, Ph. Nédélec, J.-D. Paris, and A. V. Fofonov, “Comparison between satellite spectrometric and aircraft measurements of the gas composition in the troposphere over Siberia during forest fires in 2012,” Issled. Zemli Kosmosa, No. 1, 72–84 (2014).

    Google Scholar 

  25. K. G. Gribanov, V. I. Zakharov, S. A. Tashkun, and Vl. G. Tyuterev, “A new software tool for radiative transfer calculations and its application to IMG/ADEOS data,” J. Quant. Spectrosc. Radiat. Transfer 68 (4), 435–451 (2001).

    Article  ADS  Google Scholar 

  26. C. Crevoisier, A. Chedin, H. Matsueda, T. Machida, R. Armante, and N. A. Scott, “First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations,” Atmos. Chem. Phys. 9, 4797–4810 (2009).

    Article  ADS  Google Scholar 

  27. T. August, D. Klaes, P. Schlussel, T. Hultberg, M. Crapeau, A. Arriaga, A. O’Carroll, D. Coppens, R. Munro, and X. Calbet, “IASI on Metop-A operational level 2 retrievals after five years in orbit,” J. Quant. Spectrosc. Radiat. Transfer 113 (11), 1340–1371 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Khamatnurova.

Additional information

Original Russian Text © M.Yu. Khamatnurova, K.G. Gribanov, V.I. Zakharov, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khamatnurova, M.Y., Gribanov, K.G. & Zakharov, V.I. Development of Algorithms for Atmospheric Methane Distribution Retrieval from METOP/IASI Spectra. Atmos Ocean Opt 31, 86–90 (2018). https://doi.org/10.1134/S1024856018010074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856018010074

Keywords

Navigation