Skip to main content
Log in

Connections between climatic characteristics and cyclonic activity in winter over Siberia in 1976–2011

  • Atmospheric Radiation, Optical Weather, and Climate
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The temperature, surface pressure, and cloud cover for Siberia (50°–70° N; 60°–110° E) in the winter period (December–February) are estimated over 1976–2011 based on data from 163 meteorological stations. Using surface synoptic maps, time series of winter cyclone characteristics, such as the total number and central pressure, are derived for the same period. Two time intervals are found in variations of climatic characteristics and cyclone activity characteristics: 1976–1990 and 1991–2011. In the first period, the temperature and cloud cover increased and the surface pressure fell, which reduced the number of cyclones and intensified (deepened) them. In the second period, opposite trends took place. The correlation analysis between the climate variables and cyclonic activity characteristics allowed us to consistently describe the impact of cyclones on the surface pressure and cloudiness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Yin, “A consistent poleward shift of the storm tracks in simulations of 21st century climate,” Geophys. Res. Lett. 32, L18701 (2005). doi 10.1029/2005GL023684

    Article  ADS  Google Scholar 

  2. S. J. Lambert and J. C. Fyfe, “Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: Results for the models participating in the IPCC diagnostic exercise,” Clim. Dynam. 26, 713–728 (2006). doi 10.1007/s00382-006-0110-3

    Article  ADS  Google Scholar 

  3. E. K. M. Chang, Y. Guo, and X. Xio, “CMIP5 multimodel ensemble projection of storm track change under global warming,” J. Geophys. Res. 117, D23118 (2012). doi 10.1029/2012JD18578

    ADS  Google Scholar 

  4. B. J. Harvey, L. C. Shaffrey, and T. J. Woollings, “Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models,” Clim. Dyn. 43, 1171–1182 (2014). doi 10.1007/s00382-013-1883-9

    Article  Google Scholar 

  5. U. Ulbrich, G. C. Leckebusch, and J. G. Pinto, “Extratropical cyclones in the present and future climate: A review,” Teor. Appl. Climatol. 96 (1–2), 117–131 (2009).

    Article  ADS  Google Scholar 

  6. S. K. Gulev, O. Zolina, and S. Grigoriev, “Extratropical cyclone variability in the Northern Hemisphere winter from NCEP/NCAR reanalysis data,” Clim. Dyn. 17 (10), 795–809 (2001).

    Article  Google Scholar 

  7. X. Wang, V. Swail, and F. Zwiers, “Climatology and changes of extratropical cyclone activity: comparison of ERA40 with NCEP/NCAR reanalysis for 1958–2001,” J. Climate 19 (13), 3145–3166 (2006).

    Article  ADS  Google Scholar 

  8. F. Feser, M. Barcikowska, O. Krueger, F. Schenk, R. Weisse, and L. Xia, “Storminess over the North Atlantic and Northwestern Europe—a review,” Q.J.R. Meteorol. Soc. 141 (687), 350–382 (2015).

    Article  ADS  Google Scholar 

  9. B. J. Harvey, L. C. Shaffrey, T. J. Woollings, G. Zappa, and K. I. Hodges, “How large are projected 21st century storm track changes?,” Geophys. Res. Lett. 39, L18707 (2012). doi 10.1029/2012GL052873

    Article  ADS  Google Scholar 

  10. G. Zappa, L. C. Shaffrey, K. I. Hodges, P. G. Sansom, and D. B. Stephenson, “A multimodel assessment of future projections of North Atlantic and European extratropical cyclones in the CMIP5 climate models,” J. Climate 26 (16), 5846–5862 (2013).

    Article  ADS  Google Scholar 

  11. K. I. Hodhes, R. W. Lee, and L. Bengtsson, “A comparison of extratropical cyclones on recent reanalysis ERA-Interim, NASA MERRA, NCEP CFSR and JRA-25,” J. Climate 24 (18), 4888–4906 (2011).

    Article  ADS  Google Scholar 

  12. U. Neu, M. G. Akperov, N. Bellenbaum, R. Benestad, R. Blender, R. Caballero, A. Cocozza, H. F. Dacre, Y. Feng, K. Fraedrich, J. Grieger, S. Gulev, J. Hanley, T. Hewson, M. Inatsu, K. Keay, S. F. Kew, I. Kindem, G. S. Leckebusch, M. L. R. Liberato, P. Lionello, I. I. Mokhov, J. G. Pinto, C. C. Raible, M. Reale, I. Rudeva, M. Schuster, I. Simmonds, M. Sinclair, M. Sprenger, N. D. Tilinina, I. F. Trigo, S. Ulbrich, U. Ulbrich, X. L. Wang, and H. Wernli, “IMILAST: A community efforts to intercompare extratropical cyclone detection and tracking algorithms,” Bull. Amer. Meteorol. Soc. 94, 529–547 (2013).

    Article  ADS  Google Scholar 

  13. G. A. Meehl, J. M. Ablaster, J. T. Fasullo, A. Hu, and K. E. Trenberth, “Model-based evidence of deepocean heat uptake during surface-temperature hiatus periods,” Nat. Clim. Change 1, 360–364 (2011).

    Article  ADS  Google Scholar 

  14. Y. Kosaka and S. P. Xie, “Recent global-warming hiatus tied to equatorial Pacific surface cooling,” Nature 501 (7467), 403–407 (2003).

    Article  ADS  Google Scholar 

  15. C. Li, B. Stevens, and J. Marotzke, “Eurasian winter cooling in the warming hiatus of 1998–2012,” Geophys. Res. Lett. 42, 8131–8139 (2015). doi 10.1002/2015GL065327

    Article  ADS  Google Scholar 

  16. J. L. Johen, J. C. Furtado, M. Barlow, V. A. Alexeev, and J. E. Cherry, “Asymmetric seasonal temperature trends,” Geophys. Res. Lett. 39, L04705 (2012). doi 10.1029/2011GL050582

    ADS  Google Scholar 

  17. S. Outten, R. Davy, and I. Esay, “Eurasian winter cooling: Intercomparison of reanalysis and CMIP5 data sets,” Atmos. Oceanic Sci. Lett. 6 (5), 324–331 (2013).

    Article  Google Scholar 

  18. M. V. Kabanov, “Western Siberian regional climateforming factors,” Geogr. Prirod. Resursy, 3, 107–113 (2015).

    Google Scholar 

  19. P. J. Mailier, D. B. Stephenson, C. A. T. Ferro, and K. I. Hodges, “Serial clustering of extratropical cyclones,” Mon. Weather. Rev. 134 (8), 2224–2240 (2006).

    Article  ADS  Google Scholar 

  20. X. Zhang, J. E. Walsh, J. Zhang, U. S. Bhatt, and M. Ikeda, “Climatology and interannual variability of Arctic cyclone activity: 1948–2002,” J. Climate 17 (12), 2300–2317 (2004).

    Article  ADS  Google Scholar 

  21. I. I. Ippolitov, M. V. Kabanov, S. V. Loginov, and E. V. Kharyutkina, “Structure and dynamic of meteorological fields on the Asian region of Russia in the period of the global warming for 1975–2005,” Zh. Sibir. Federal. Univ., Biol. 1 (4), 323–344 (2008).

    Google Scholar 

  22. E. T. Chemekova, M. A. Boltovskaya, S. V. Loginov, M. V. Pakhmesterova, and N. S. Terskova, “Variability of vortex activity in the Asian Russia in late 20th–early 21st centuries,” in Abstracts of the 10th Siberian Workshop on the Climate and Ecological Monitoring, Ed. by M. V. Kabanov (Agraf-Press, Tomsk, 2013), p. 157 [in Russian].

    Google Scholar 

  23. V. P. Gorbatenko, I. I. Ippolitov, and N. V. Podnebesnykh, “Atmospheric circulation over Western Siberia in 1976–2004,” Rus. Meteorol. Hydrol. 32 (5), 301–306 (2007).

    Article  Google Scholar 

  24. S. D. Outten and I. Esau, “A link between Arctic sea ice and recent cooling trends over Eurasia,” Clim. Change 110, 1069–1075 (2012).

    Article  Google Scholar 

  25. J. E. Overland and M. Wang, “Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice,” Tellus, A 62 (1), 1–9 (2010).

    Article  ADS  Google Scholar 

  26. V. Petoukhov and V. A. Semenov, “A link between reduced Barents–Kara Sea ice and cold winter extremes over northern continents,” J. Geophys. Res. 115, D21111 (2010).

    Article  ADS  Google Scholar 

  27. D. W. Kim, H. R. Byun, and Y. I. Lee, “The long-term changes of Siberian High and winter climate over the Northern hemisphere,” J. Korean. Meteorol. Soc. 41 (2–1), 275–283 (2005).

    Google Scholar 

  28. D. Y. Gong and C. H. Ho, “The Siberian High and climate change over middle to high latitude Asia,” Theor. Appl. Climatol. 72 (1–2), 1–9 (2002).

    Article  ADS  Google Scholar 

  29. H. M. Hasanean, M. Almazroui, P. D. Jones, and A. A. Alemoudi, “Siberian High variability and its teleconnections with tropical circulation and surface air temperature over Saudi Arabia,” Clim. Dyn. 41 (7–8), 2003–2018 (2013).

    Article  Google Scholar 

  30. A. Chernokulsky, I. I. Mokhov, and N. Nikitina, “Winter cloudiness variability over Northern Eurasia related to the Siberian High during 1966–2010,” Environ. Res. Lett. 8 (2013). 045012

    Google Scholar 

  31. I. I. Mokhov, A. V. Chernokul’skii, M. G. Akperov, J.-L. Dufresne, and H. Le Treut, “Variations in the characteristics of cyclonic activity and cloudiness in the atmosphere of extratropical latitudes of the Northern Hemisphere based from model calculations compared with the data of the reanalysis and satellite data,” Dokl., Earth Sci. 424 (1), 147–150 (2009).

    Article  ADS  Google Scholar 

  32. E. I. Khlebnikova and I. A. Sall, “Peculiarities of climatic changes in cloud cover over the Russian Federation,” Rus. Meteorol. Hydrol. 34 (7), 411–417 (2009).

    Article  Google Scholar 

  33. V. S. Komarov, G. G. Matvienko, S. N. Il’in, and N. Ya. Lomakina, “Estimate of local features of longterm variations in cloud cover over the territory of Siberia using results of its climatic zoning according to total and low-level cloud regimes,” Atmos. Ocean. Opt. 28 (3), 265–272 (2015).

    Article  Google Scholar 

  34. X. Zhang, C. Lu, and Z. Guan, “Weakened cyclones, intensified anticyclones and recent extreme cold winter weather events in Eurasia,” Environ. Res. Lett. 7 (4), 044044 (2012).

    Article  ADS  Google Scholar 

  35. J.-H. Jeong, T. Ou, H. W. Linderholm, B.-M. Kim, J.-S. Kug, and D. Chen, “Recent recovery of the Siberian High intensity,” J. Geophys. Res. 116, D23102 (2011). doi 10.1029/2011JD015904

    ADS  Google Scholar 

  36. N. P. Shakina, Dynamics of Atmospheric Fronts and Cyclones (Gidrometeoizdat, Leningrad, 1985) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Podnebesnykh.

Additional information

Original Russian Text © N.V. Podnebesnykh, I.I. Ippolitov, M.V. Kabanov, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podnebesnykh, N.V., Ippolitov, I.I. & Kabanov, M.V. Connections between climatic characteristics and cyclonic activity in winter over Siberia in 1976–2011. Atmos Ocean Opt 30, 55–62 (2017). https://doi.org/10.1134/S1024856017010109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856017010109

Keywords

Navigation