Skip to main content
Log in

Comparison of ground-based microwave measurements of precipitable water vapor with radiosounding data

  • Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Microwave (MW) radiometers are widely used for monitoring the precipitable water vapor (PWV), which is a key greenhouse gas in the Earth’s atmosphere. Different measurement campaigns are carried out to estimate the accuracy of MW measurements of PWV. In this work, we compare the results of PWV measurements performed with a ground-based MW radiometer RPG-HATPRO at the Peterhof station of Saint Petersburg State University with radiosounding data from the Voyeykovo station. More than 850 measurements (at the day and nighttime) in the period from March 13, 2013, to May 31, 2014, are included in the comparison. It is shown that the discrepancy of PWV values measured with both methods is caused by the errors of the methods and by the spatial inhomogeneity of the PWV field. The discrepancy can attain tens of percent, which is to be taken into account in the intercomparison and validation of different methods for PWV retrieval. Exclusion of the cases with strong spatial inhomogeneity allowed reducing the mean deviations between MW and radiosounding measurements to 3–4% and the standard deviations between two sets of measurements to 12–14%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Gurvich, A. G. Ershov, A. P. Naumov, and V. M. Plechkov, “Study of the precipitable water vapor by the ground-based IR detection method,” Meteorol. Gidrol, No. 5, 22–27 (1972).

    Google Scholar 

  2. A. G. Gorelik, V. V. Kalashnikov, L. S. Raikova, and Yu. A. Frolov, “IR measurements of the precipitable water vapor in the atmosphere and the integrated cloud liquid,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 9 (5), 928–936 (1973).

    Google Scholar 

  3. S. A. Zhevakin, “Passive-radar determination of the integral humidity of a cloudy atmosphere and of the integral water content, temperature, and height of the drop phase of clouds,” Radiophys. Quantum Electron. 21 (8), 786–792 (1978).

    Article  ADS  Google Scholar 

  4. V. D. Stepanenko, G. G. Shchukin, L. P. Bobylev, and S. Yu. Matrosov, IR Detection in Meteorology (Gidrometizdat, Leningrad, 1987), p. 283 [in Russian].

    Google Scholar 

  5. A. G. Gorelik, Yu. A. Frolov, and G. G. Shchukin, “Complex MW and IR radiometric study of clouds,” Trudy GGO, No. 526, 3–15 (1989).

    Google Scholar 

  6. G. G. Shchukin, V. D. Stepanenko, S. P. Obraztsov, D. M. Karavaev, V. Yu. Zhukov, and Yu. V. Rybakov, “Status and prospects of radiophysical studies of the atmosphere and underlying surface,” Trudy GGO, No. 560, 143–167 (2009).

    Google Scholar 

  7. E. N. Kadygrov, “Microwave radiometry of atmospheric boundary layer: Method, equipment, and applications,” Opt. Atmos. Okeana 22 (7), 697–704 (2009).

    Google Scholar 

  8. E. N. Kadygrov, A. G. Gorelik, E. A. Miller, V. V. Nekrasov, A. V. Troitskii, T. A. Tochilkina, and A. N. Shaposhnikov, “Results of tropospheric thermodynamics monitoring on the base of multichannel microwave system data,” Opt. Atmos. Okeana 26 (6), 459–465 (2013).

    Google Scholar 

  9. http://cetempsaquilainfnit/mwrnet/

  10. G. G. Shchukin and D. M. Karavaev, “Some results and prospects of the studies in MW radiometry (IR detection) carried out at Voeikov Main Geophysical Observatory,” Uspekhi Zarubezhnoi Radioelektroniki, No. 6, 29–37 (2008).

    Google Scholar 

  11. Yu. I. Rabinovich and G. G. Shchukin, “Atmospheric water vapor content calculated from MW radiation measurements,” Trudy GGO, No. 222, 62–73 (1968).

    Google Scholar 

  12. E. R. Westwater and M. J. Falls, “Ground-based microwave radiometric observations of precipitable water vapour: A comparison with ground truth from two radiosonde observation systems,” J. Atmos. Ocean. Techn. 6 (8), 724–730 (1989).

    Article  Google Scholar 

  13. Y. Han, J. B. Snider, E. R. Westwater, S. H. Melfi, and R. A. Ferrare, “Observations of water vapor by groundbased microwave radiometers and Raman lidar,” J. Geophys. Res., D 99 (9), 18695–18702 (1994).

    Article  ADS  Google Scholar 

  14. D. M. Karavaev and G. G. Shchukin, “Precipitable water vapor and cloud liquid from MW radiometry data,” Trudy NITs DZA, “Prikladnaya Meteorologiya”, No. 1 (546) (1997).

  15. J. Guldner and D. Spankuch, “Results of year-round remotely sensed integrated water vapor by groundbased microwave radiometry,” J. Appl. Meteorol. 38 (7), 981–988 (1999).

    Article  ADS  Google Scholar 

  16. E. R. Westwater, Y. Han, M. D. Shupe, and S. Y. Matrosov, “Analysis of integrated cloud liquid and precipitable water vapor retrievals from microwave radiometers during the surface heat budget of the arctic ocean project,” J. Geophys. Res., D 106 (23), 32019–32030 (2001).

    Article  ADS  Google Scholar 

  17. Yuei-An Liou, Yu-Tun Teng, Teresa Van Hove, and C. James, “Liljegren comparison of precipitable water observations in the near tropics by GPS, microwave radiometer, and radiosondes,” J. Appl. Meteorol., No. 40, 5–15 (2001).

    Article  ADS  Google Scholar 

  18. A. Memmo, F. Ermanno, P. Tiziana, D. Cimini, R. Ferretti, S. Bonafoni, and P. Ciotti, “Comparison of MM5 integrated water vapor with microwave radiometer, GPS, and radiosonde measurements,” IEEE Trans. Geosci. Remote Sens. 43 (5), 1050–1058 (2005).

    Article  ADS  Google Scholar 

  19. L. Martin, C. Mätzler, J. Tim, T. J. Hewison, and D. Ruffieux, “Intercomparison of integrated water vapour measurements,” Meteorologische Zeitschrift 15 (1), 57–64 (2006).

    Article  ADS  Google Scholar 

  20. J. Morland, B. Deuber, D. G. Feist, L. Martin, S. Nyeki, N. Kampfer, C. Mätzler, P. Jeannet, and L. Vuilleumier, “The STARTWAVE atmospheric water database,” Atmos. Chem. Phys. 6, 2039–2056 (2006). http://wwwatmos-chem-physnet/6/2039/2006/wwwatmos-chem-physnet/6/2039/2006/

    Article  ADS  Google Scholar 

  21. J. Morland, Coen M. Collaud, K. Hocke, P. Jeannet, and C. Mätzler, “Tropospheric water vapour above Switzerland over the last 12 years,” Atmos. Chem. Phys. 9, 5975–5988 (2009). http://water wwwatmoschem- physnet/9/5975/2009/

    Article  ADS  Google Scholar 

  22. C. Mätzler and J. Morland, “Refined physical retrieval of integrated water vapor and cloud liquid for microwave radiometer data,” IEEE Trans. Geosci. Remote Sens. 47 (6), 1585–1594 (2009).

    Article  ADS  Google Scholar 

  23. D. M. Karavaev and G. G. Shchukin, “MW radiometry study of the atmospheric liquid during the development of convective clouds and thunderstorms,” Izv. Vuzov, Severo-Kavkazskii Region, Estestvennye Nauki, Fiz. Atmos., Spec. Is., 53–58 (2010).

    Google Scholar 

  24. I. A. Berezin, Ya. A. Virolainen, Yu. M. Timofeev, and A. V. Poberovskii, “Comparison of ground-based IR and MW technique for measurements of the integrated water vapor content,” Izv., Atmos. Ocean. Phys. (in press).

  25. Th. Rose and H. Czekala, “Accurate atmospheric profiling with the RPG-HATPRO humidity and temperature profiler,” (RPG, Meckenheim, Germany, 2005).

    Google Scholar 

  26. http://weatheruwyoedu/upperair/soundinghtml

  27. M. B. Fridzon and Yu. M. Ermoshenko, “Radiosounding of the atmosphere,” Mir Izmerenii, No. 7 (2009). http://ria-stkru/mi/adetailphp?ID=30717

  28. A. O. Semenov, Ya. A. Virolainen, Yu. M. Timofeyev, and A. V. Poberovskii, “Comparison of ground-based ftir and radio sounding measurements of water vapor total content,” Atmos. Ocean. Opt. 28 (2), 121–125 (2015).

    Article  Google Scholar 

  29. H. Vogelmann, R. Sussmann, T. Trickl, and A. Reichert, “Spatio-temporal variability of water vapor investigated by lidar and FTIR vertical soundings above Mt. Zugspitze,” Atmos. Chem. Phys. Discuss. 14, 28231–28268 (2014). doi 10.5194/acpd-14-28231-2014

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Berezin.

Additional information

Original Russian Text © I.A. Berezin, Yu.M. Timofeyev, Ya.A. Virolainen, K.A. Volkova, 2016, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berezin, I.A., Timofeyev, Y.M., Virolainen, Y.A. et al. Comparison of ground-based microwave measurements of precipitable water vapor with radiosounding data. Atmos Ocean Opt 29, 274–281 (2016). https://doi.org/10.1134/S1024856016030040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856016030040

Keywords

Navigation