Skip to main content
Log in

Allowance for polarization in passive space sensing of reflective properties of the Earth’S surface

  • Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The problem of allowance for polarization in statistical simulation of satellite imaging of the surface of the Earth in the optical wavelength range is considered. It is shown that the neglect of polarizing properties of radiation can lead to significant errors when retrieving the reflection coefficients of low-reflectivity surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Tolpin, E. A. Lupyan, S. A. Bartalev, D. E. Plotnikov, and A. M. Matveev, “Possibilities of agricultural vegetation condition analysis with the “VEGA” satellite service,” Atmos. Ocean. Opt. 27 (7), 581–586 (2014).

    Google Scholar 

  2. Yu. M. Polishchuk and O. S. Tokareva, “The use of satellite images for ecological estimate of flare firing of gas at oil fields of Siberia,” Opt. Atmos. Okeana 27 (7), 647–651 (2014).

    Google Scholar 

  3. M. Yu. Kataev and A. A. Bekerov, “Detection of ecological changes in the natural environment from satellite measurements,” Opt. Atmos. Okeana 27 (7), 652–656 (2014).

    Google Scholar 

  4. P. N. Reinersman and K. L. Carder, “Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect,” Appl. Opt. 34 (21), 4453–4471 (1995).

    Article  ADS  Google Scholar 

  5. E. F. Vermote and A. Vermeulen. http://modisgsfc. nasagov/atbd/atbd_nod08pdf.

  6. V. V. Belov and S. V. Afonin, From Theoretical Foundations, Theory, and Simulation to Thematic Processing of Satellite Images (Publishing House of IAO SB RAS, Tomsk, 2005) [in Russian].

    Google Scholar 

  7. S. V. Afonin, V. V. Belov, and D. V. Solomatov, “Solution of problems of the temperature monitoring of the Earth’s surface from space on the basis of the RTM method,” Atmos. Ocean. Opt. 21 (12), 921–927 (2008).

    Google Scholar 

  8. Y. Mekler and Y. J. Kaufman, “Contrast reduction by the atmosphere and retrieval of nonuniform surface reflectance,” Appl. Opt. 21 (2), 310–316 (1982).

    Article  ADS  Google Scholar 

  9. F. M. Breon and E. Vermote, “Correction of MODIS surface reflectance time series for BRDF effects,” Remote Sens. Environ. 125, 1–9 (2012).

    Article  Google Scholar 

  10. A. Lyapustin, J. Martonchik, Y. Wang, I. Laszlo, and S. Korkin, “Multiangle implementation of atmospheric correction (MAIAC): 3. Atmospheric correction,” Remote Sens. Environ. 127, 385–393 (2012).

    Article  Google Scholar 

  11. V. E. Zuev, V. V. Belov, and V. V. Veretennikov, Theory of Systems in Optics of Dispersion Media (Spektr, Tomsk, 1997) [in Russian].

    Google Scholar 

  12. V. V. Belov and M. V. Tarasenkov, “Statistical modeling of the point spread function in the spherical atmosphere and a criterion for detecting image isoplanarity zones,” Atmos. Ocean. Opt. 23 (6), 441–447 (2010).

    Article  Google Scholar 

  13. A. V. Kozhevnikova, M. V. Tarasenkov, and V. V. Belov, “Parallel computations for solving problems of the reconstruction of the reflection coefficient of the Earth’s surface by satellite data,” Atmos. Ocean. Opt. 26 (4), 326–328 (2013).

    Article  Google Scholar 

  14. G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, and B. S. Elepov, Monte Carlo Method in Atmospheric Optics (Nauka, Novosibirsk, 1976) [in Russian].

    Google Scholar 

  15. F. X. Kneizys, E. P. Shettle, G. P. Anderson, L. W. Abreu, J. H. Chetwynd, J. E. A. Selby, S. A. Clough, and W. O. Gallery, User Guide to LOWTRAN-7. ARGL-TR-86–0177 ERP 1010 (AFB, MA, 1988).

    Google Scholar 

  16. V. V. Belov, B. D. Borisov, and I. Yu. Makushkina, “Some regularities in formation of side illumination noise in vision systems,” Opt. Atmosf. 1 (2), 18–24 (1988).

    Google Scholar 

  17. V. V. Belov, M. V. Tarasenkov, and K. P. Piskunov, “Parametrical model of solar haze intensity in the visible and UV ranges of the spectrum,” Opt. Atmos. Okeana 23 (4), 294–297 (2010).

    Google Scholar 

  18. V. V. Belov and M. V. Tarasenkov, “Statistical modeling of the intensity of light fluxes reflected by the Earth’s spherical surface,” Atmos. Ocean. Opt. 23 (3), 197–203 (2010).

    Article  Google Scholar 

  19. H. C. van de Hulst, Light Scattering by Small Particles (John Wiley and Sons, New York; Chapman and Hall, London, 1957).

    Google Scholar 

  20. D. Deirmendzhan, Electromagnetic Radiation Scattering by Spherical Polydispersed Particles (Mir, Moscow, 1971) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zimovaya.

Additional information

Original Russian Text © A.V. Zimovaya, M.V. Tarasenkov, V.V. Belov, 2015, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimovaya, A.V., Tarasenkov, M.V. & Belov, V.V. Allowance for polarization in passive space sensing of reflective properties of the Earth’S surface. Atmos Ocean Opt 29, 171–174 (2016). https://doi.org/10.1134/S1024856016020147

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856016020147

Keywords

Navigation