Skip to main content
Log in

Generation of aerosol and droplets in binary mixtures of saturated water vapor with air and molecular gases

  • Optics of Clusters, Aerosols, and Hydrosoles
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Results of observation of the generation of aerosol particles and droplets in mixtures of saturated water vapor with air and molecular gases are described. The kinetics of generation of aerosol and droplets was studied in the absence of a monokinetic electron beam and under its influence on a gas mixed with supersaturated water vapor formed in the process of a controllable pressure discharge from a spherical chamber of 1.4 m diameter with the gas mixture into a vacuum reservoir ~40 m3 in volume. The generation kinetics was recorded by the low-angle laser beam scattering method (for droplets) and with an aerosol spectrometer (for particles). Experimental results show a significant dependence of droplet and particle generation on the ionizing radiation effect. The 3D computer simulation of the process of super-saturated water vapor condensation on ions by the lattice Boltzmann method (LBM) and molecular dynamics (MD) describes qualitatively the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. P. Ney, “Cosmic radiation and the weather,” Nature (Gr. Brit.) 183, 451–452 (1959).

    Article  ADS  Google Scholar 

  2. N. Marsh and H. Svensmark, “Cosmic rays, clouds and climate,” Space Sci. Rev. 94 (1–2), 215–230 (2000).

    Article  ADS  Google Scholar 

  3. M. Andreas, B. Enghoff, and H. Svensmark, “The role of atmospheric ions in aerosol nucleation: A review,” Atmos. Chem. Phys. 8 (16), 4911–4923 (2008).

    Article  ADS  Google Scholar 

  4. G. F. Krymskii, “Cosmic rays and the weather,” Nauka Tekh. Yakutii, No. 1 (8), 3–6 (2005).

    Google Scholar 

  5. D. J. Wilson, Wilson Chamber (Izd. Inostr. Liter., Moscow, 1954) [in Russian].

    Google Scholar 

  6. A. E. Nielsen, Kinetics of Precipitation (Pergamon, Oxford, 1964).

    Google Scholar 

  7. G. F. Krymskii, V. V. Kolosov, A. P. Rostov, and I. S. Tyryshkin, “Experimental setup for investigating the water vapor nucleation in an artificial atmosphere,” Opt. Atmos. Okeana 23 (9), 820–825 (2010).

    Google Scholar 

  8. G. F. Krymskii, V. V. Kolosov, and I. S. Tyryshkin, “Vapor condensation under the ionizing effect,” Opt. Atmos. Okeana 23 (9), 826–829 (2010).

    Google Scholar 

  9. Yu. N. Ponomarev, A. V. Klimkin, A. S. Kozlov, V. V. Kolosov, G. F. Krymskii, A. N. Kuryak, S. B. Malyshkin, and A. K. Petrov, “Study of condensation of supersaturate water vapor under ionization of the atmosphere and accompanying characteristic IR radiation,” Solnechno-Zemnaya Fiz., No. 21, 58–61 (2012).

    Google Scholar 

  10. V. F. Tarasenko, S. I. Yakovlenko, V. M. Orlovskii, A. N. Tkachev, and S. A. Shunailov, “Production of powerful electron beams in dense gases,” J. Experim. Theor. Phys. Lett. 77 (11), 611–615 (2003).

    Article  ADS  Google Scholar 

  11. N. N. Das Gupta and S. K. Ghosh, “Wilson chamber and its application to physics,” Rev. Mod. Phys. 18 (2), 225–365 (1946).

    Article  ADS  Google Scholar 

  12. A. G. Amelin, Theoretical Foundations of Fogging during Vapor Condensation (Khimiya, Moscow, 1972) [in Russian].

    Google Scholar 

  13. J. Kolafa, “Time-reversible always stable predictor-corrector method for molecular dynamics of polarizable molecules,” J. Comput. Chem. 25 (3), 335–342 (2003).

    Article  Google Scholar 

  14. S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flow,” Annu. Rev. Fluid Mech. 30, 329–364 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  15. X. Shan and H. Chen, “Lattice Boltzmann model for simulating flows with multiple phases and components,” Phys. Rev., E 47 (3), 1815–1819 (1993).

    Article  ADS  Google Scholar 

  16. A. L. Kupershtokh, D. A. Medvedev, and D. I. Karpov, “On equations of state in a lattice Boltzmann method,” Comput. Math. Appl. 58 (5), 965–974 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. L. Kupershtokh, D. A. Medvedev, and I. I. Gribanov, “Modeling of thermal flows in a medium with phase transitions using the lattice Boltzmann method,” Vychislitel’nye Metody Programmirovanie 15 (2), 317–328 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Klimkin.

Additional information

Original Russian Text © A.V. Klimkin, A.N. Kuryak, Yu.N. Ponomarev, A.S. Kozlov, S.B. Malyshkin, A.K. Petrov, A.L. Kupershtokh, D.I. Karpov, D.A. Medvedev, 2015, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimkin, A.V., Kuryak, A.N., Ponomarev, Y.N. et al. Generation of aerosol and droplets in binary mixtures of saturated water vapor with air and molecular gases. Atmos Ocean Opt 29, 127–134 (2016). https://doi.org/10.1134/S102485601602007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485601602007X

Keywords

Navigation