Skip to main content
Log in

Water vapor continuum absorption in near-IR atmospheric windows

  • Spectroscopy of Ambient Medium
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The near-infrared water vapor absorption is measured in the 2000–8000 cm−1 spectral region. Spectra were recorded using an IFS 125 HR Fourier spectrometer at a temperature of 287 K and a spectral resolution of 0.03 cm−1. The water vapor continuum absorption spectrum is retrieved using the known absorption in the 2500 cm−1 region as a reference point. It is shown that the continuum absorptions in four windows differ by no more than 20% under investigation conditions. This contradicts the MT_CKD continuum model, which predicts a much stronger variability of the continuum in these windows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Held and B. J. Soden, “Water vapor feedback and global warming,” Annu. Rev. Energ. Environ. 25, 441–475 (2000).

    Article  Google Scholar 

  2. S. A. Clough, M. J. Iacono, and J.-L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res., D 97 (14), 15761–15785 (1992).

    Article  ADS  Google Scholar 

  3. C. G. Kilsby, D. P. Edwards, R. W. Saunders, and J. S. Foot, “Water-vapour continuum absorption in the tropics: Aircraft measurements and model comparisons,” Quart. J. Roy. Meteorol. Soc. 118 (506), 715–748 (1992).

    Article  ADS  Google Scholar 

  4. K. P. Shine, I. V. Ptashnik, and G. Radel, “The water vapour continuum: Brief history and recent developments,” Surv. Geophys. 33 (3–4), 535–555 (2012).

    Article  ADS  Google Scholar 

  5. Q. Ma, R. H. Tipping, and C. Leforestier, “Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines,” J. Chem. Phys. 128 (12), 124313 (2008).

    Article  ADS  Google Scholar 

  6. Ju. V. Bogdanova and O. B. Rodimova, “Line shape in far wings and water vapor absorption in a broad temperature interval,” J. Quant. Spectrosc. Radiat. Transfer 111, 2298–2307 (2010).

    Article  ADS  Google Scholar 

  7. A. A. Vigasin, “Water vapour continuous absorption in various mixtures: Possible role of weakly bound complexes,” J. Quant. Spectrosc. Radiat. Transfer 64, 25–40 (2000).

    Article  ADS  Google Scholar 

  8. I. V. Ptashnik, K. M. Smith, K. P. Shine, and D. A. Newnham, “Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm–1: Evidence for water dimers,” Quart. J. Roy. Meteorol. Soc. 130 (602), 2391 (2004).

    Article  ADS  Google Scholar 

  9. J. S. Daniel, S. Solomon, H. Kjaergaard, and D. P. Schofield, “Atmospheric water vapour complexes and the continuum,” Geophys. Res. Lett. 31 (6), L06118 (2004).

    Article  ADS  Google Scholar 

  10. I. V. Ptashnik, “Evidence for the contribution of water dimers to the near-IR water vapour self-continuum,” J. Quant. Spectrosc. Radiat. Transfer 109, 831–852 (2008).

    Article  ADS  Google Scholar 

  11. I. V. Ptashnik, K. P. Shine, and A. A. Vigasin, “Water vapour self-continuum and water dimers. 1. Analysis of recent work,” J. Quant. Spectrosc. Radiat. Transfer 112, 1286–1303 (2011).

    Article  ADS  Google Scholar 

  12. Yu. I. Baranov and W. J. Lafferty, “The water vapour self- and water-nitrogen continuum absorption in the 1000 and 2500 cm–1 atmospheric windows,” Phil. Trans. Roy. Soc., A. 370 (1968), 2578–2589 (2012). doi 10.1098/rsta.2011.0234

    Article  ADS  Google Scholar 

  13. E. J. Mlawer, V. H. Payne, J-L. Moncet, J. S. Delamere, M. J. Alvarado, and D. D. Tobin, “Development and recent evaluation of the MT_CKD model of continuum absorption,” Phil. Trans. Roy. Soc. A. 370, 2520–2556 (2012).

    Article  ADS  Google Scholar 

  14. Yu. I. Baranov, W. J. Lafferty, G. T. Fraser, Q. Ma, and R. H. Tipping, “Water-vapor continuum absorption in the 800–1250 cm–1 spectral region at temperatures from 311 to 363 K,” J. Quant. Spectrosc. Radiat. Transfer 109, 2291–2302 (2008).

    Article  ADS  Google Scholar 

  15. J. G. Cormier, J. T. Hodges, and J. R. Drummond, “Infrared water vapour continuum absorption at atmospheric temperatures,” J. Chem. Phys. 122 (11), 114309 (2005).

    Article  ADS  Google Scholar 

  16. I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements,” J. Geophys. Res. 116, D16305 (2011).

    Article  ADS  Google Scholar 

  17. Yu. I. Baranov and W. J. Lafferty, “The water-vapour continuum and selective absorption in the 3 to 5 µm spectral region at temperatures from 311 to 363 K,” J. Quant. Spectrosc. Radiat. Transfer 112, 1304–1313 (2011).

    Article  ADS  Google Scholar 

  18. Yu. I. Baranov, “The continuum absorption in H2O+N2 mixtures in the 2000–3250 cm–1 spectral region at temperatures from 326 to 363 K,” J. Quant. Spectrosc. Radiat. Transfer 112, 2281–2286 (2011).

    Article  ADS  Google Scholar 

  19. I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water vapour foreign continuum absorption in near-infrared windows from laboratory measurements,” Phil. Trans. Roy. Soc., A 370 (1968), 2557–2577 (2012).

    Article  ADS  Google Scholar 

  20. I. V. Ptashnik, T. M. Petrova, Yu. N. Ponomarev, K. P. Shine, A. A. Solodov, and A. M. Solodov, “Near-infrared water vapour self-continuum at close to room temperature,” J. Quant. Spectrosc. Radiat. Transfer 120, 23–35 (2013).

    Article  ADS  Google Scholar 

  21. W. E. Bicknell, S. D. Cecca, M. K. Griffin, S. D. Swartz, and A. Flusberg, “Search for low-absorption regions in the 1.6- and 2.1-m atmospheric windows,” J. Directed Energ. 2 (2), 151–161 (2006).

    Google Scholar 

  22. D. Mondelain, A. Aradj, S. Kassi, and A. Campargue, “The water vapour self-continuum by CRDS at room temperature in the 1.6 µm transparency window,” J. Quant. Spectrosc. Radiat. Transfer 130, 381–391 (2013).

    Article  ADS  Google Scholar 

  23. Yu. N. Ponomarev, T. M. Petrova, A. M. Solodov, A. A. Solodov, and S. A. Sulakshin, “ A Fourier-spectrometer with a 30-m base-length multipass cell for the study of weak absorption spectra of atmospheric gases,” Atmos. Ocean. Opt. 24 (6), 593–595 (2011).

    Article  Google Scholar 

  24. L. S. Rothman, I. E. Gordon, I. E. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).

    Article  ADS  Google Scholar 

  25. A. A. Mitsel, I. V. Ptashnik, K. M. Firsov, and A. B. Fomin, “Efficient technique for line-by-line calculating the transmittance of the absorbing atmosphere,” Atmos. Ocean. Opt. 8 (11), 847–850 (1995).

    Google Scholar 

  26. A. J. L. Shillings, S. M. Ball, M. J. Barber, J. Tennyson, and R. L. Jones, “An upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list,” Atmos. Chem. Phys. 11 (9), 4273–4287 (2011).

    Article  ADS  Google Scholar 

  27. S. M. Newman, P. D. Green, I. V. Ptashnik, P. D. Gardiner, M. D. Coleman, R. A. McPheat, and R. M. Smith, “Airborne and satellite remote sensing of the mid-infrared water vapour continuum,” Phil. Trans. Roy. Soc., A. 370 (1968), 2611–2636 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Ptashnik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ptashnik, I.V., Petrova, T.M., Ponomarev, Y.N. et al. Water vapor continuum absorption in near-IR atmospheric windows. Atmos Ocean Opt 28, 115–120 (2015). https://doi.org/10.1134/S1024856015020098

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856015020098

Keywords

Navigation