Skip to main content
Log in

Amplitude modulation of whistlers

  • Atmospheric Radiation, Optical Weather, and Climate
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Experimental observations of whistlers carried out in July, 2011, at the Paratunka observatory (53.02° N, 158.65° E; L = 2.3) and coinciding in time with experiments in the scope of the HAARP project (62.30° N, 145.30° W; L = 4.2) made it possible to discover their nonstandard shape, which is most probably caused by amplitude-modulated electromagnetic pulses with a duration of about 1 s and a basic frequency of ≈ 1.1 kHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. N. Gershman and V. A. Ugarov, “Propagation and generation of low-frequency electromagnetic waves in the upper atmosphere,” Sov. Phys. Usp. 3(5), 743–765 (1961).

    Article  ADS  Google Scholar 

  2. D. L. Carpenter, “Electron-density variations in the magnetosphere deduced density whistler data,” J. Geophys. Res. 67(9), 3345–3360 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  3. C. G. Park and D. L. Carpenter, http://vlf.stanford.edu/sites/default/files/publications/207_0.pdf

  4. D. L. Carpenter, The History of Very Low Frequency (VLF) Radio Research at Stanford; More than Sixty Years of Discovery, Innovation, and Analysis (Stanford, 2012). URL: http://vlf.stanford.edu/pubs/history-very-low-frequency-vlf-radio-research-stanford

    Google Scholar 

  5. V. L. Ginzburg and A. V. Gurevich, “Nonlinear phenomena in a plasma located in an alternating alectromagnetic field,” Sov. Phys. Usp. 3(2), 195–229 (1960).

    Article  ADS  Google Scholar 

  6. A. V. Gurevich, “Nonlinear effects in the ionosphere,” Phys.-Usp. 50(11), 1091–1121 (2007).

    Article  ADS  Google Scholar 

  7. N. I. Bud’ko, V. I. Karpman, and O. A. Pokhotelov, “Nonlinear effects in the propagation of monochromatic VLF waves (helicons) in the magnetosphere,” JETP Lett. 14(8), 320–321 (1971).

    ADS  Google Scholar 

  8. Ya. I. Likhter, O. A. Molchanov, and V. M. Chmyrev, “Modulation of spectrum and amplitudes of low-frequency signal in the magnetosphere plasma,” JETP Lett. 14(8), 325–327 (1971).

    ADS  Google Scholar 

  9. M. Golkowski, U. S. Inan, and M. B. Cohen, “Cross modulation of whistler mode and HF waves above the HAARP ionospheric heater,” J. Geophys. Res. Lett. 36, L15103 (2009).

    Article  ADS  Google Scholar 

  10. R. P. Sharma, M. L. Goldstein, Navin Kumar Dwivedi, and Prashant K. Chauhan, “Whistler propagation and modulation in the presence of nonlinear Alfven waves,” J. Geophys. Res. 115, A12207 (2010).

    Article  ADS  Google Scholar 

  11. Yu. A. Kopytenko, O. A. Molchanov, M. M. Mogilevskii, V. A. Bushmarin, V. G. Eremeev, A. A. Ivanov, V. V. Lizunov, Yu. M. Markeeva, A. Yu. Shchekotov, and M. M. Pogrebnikov, “Demodulation of high-power low-frequency waves in the subauroral ionosphere in the range of heomagnetic pulsations,” JETP Lett. 25(5), 218–221 (1977).

    ADS  Google Scholar 

  12. K. L. Graf, U. S. Inan, and M. Spasojevic, “Transmitter-induced modulation of subionospheric VLF signals: Ionospheric heating rather than electron precipitation,” J. Geophys. Res. 116 (2011). doi: 10.1029/2011JA016996

  13. A. V. Streltsov, M. Golkowski, U. S. Inan, and K. D. Papadopoulos, “Effect of frequency modulation on whistler mode waves in the magnetosphere,” J. Geophys. Res. 114, A08214 (2009).

    ADS  Google Scholar 

  14. U. S. Inan, M. Golkowski, D. L. Carpenter, N. Reddell, R. C. Moore, T. F. Bell, E. Paschal, P. Kossey, E. Kennedy, and S. Z. Meth, “Multi-hop whistlermode ELF/VLF signals and triggered emissions excited by the HAARP HF heater,” J. Geophys. Res. Lett. 31, L24805 (2004).

    Article  ADS  Google Scholar 

  15. P. Kulkarni, U. S. Inan, and T. F. Bell, “Energetic electron precipitation induced by spacebased VLF transmitters,” J. Geophys. Res. 113, A09203 (2008).

    ADS  Google Scholar 

  16. A. V. Streltsov, M. Golkowski, U. S. Inan, and K. D. Papadopoulos, “Propagation of whistler mode waves with a modulated frequency in the magnetosphere,” J. Geophys. Res. 115, A09209 (2010).

    ADS  Google Scholar 

  17. I. Kimura, “Effect of ions on whistler-mode ray tracing,” Radio Sci. 1(3), 263–283 (1966).

    Google Scholar 

  18. U. Inan and T. Bell, “The plasmapause as a VLF wave guide,” J. Geophys. Res. 82(19), 2819–2827 (1977).

    Article  ADS  Google Scholar 

  19. C. E. J. Watt, R. Rankin, and A. W. Degeling, “Whistler mode wave growth and propagation in the prenoon magnetosphere,” J. Geophys. Res. 117, A06205 (2012).

    ADS  Google Scholar 

  20. J. A. Fejer, “The absorption of short radio waves in the ionospheric D and E regions,” J. Atmos. Solar-Terr. Phys., No. 23, 260–274 (1961).

    Google Scholar 

  21. A. V. Gurevich and A. B. Shvartsburg, Nonlinear Theory of Radiowave Propagation in the Ionosphere (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  22. O. A. Molchanov and Yu. M. Markeeva, Technique for Processing and Interpreting Dynamic Spectra of Whistlers to Determine the Electron concentration in the Earth’s Magnetosphere (IZMIR AN CCCR, Moscow, 1974) [in Russian].

    Google Scholar 

  23. O. A. Molchanov, Low-Frequency Waves and Induced Radiation in the Near-Earth Plasma (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Sivokon’.

Additional information

Original Russian Text © V.P. Sivokon’, N.V. Cherneva, G.I. Druzhin, D.V. Sannikov, 2014, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivokon’, V.P., Cherneva, N.V., Druzhin, G.I. et al. Amplitude modulation of whistlers. Atmos Ocean Opt 27, 511–516 (2014). https://doi.org/10.1134/S1024856014060177

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856014060177

Keywords

Navigation