Skip to main content
Log in

Simultaneous Degradation of Penoxsulam with Power Generation in Microbial Fuel Cells

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The widespread use of penoxsulam has increased the potential for environmental risks. In this study, a microbial fuel cell (MFC) was investigated and optimized for degradation of penoxsulam and corresponding power generation performance. Of the electricity producing bacteria tested, Shewanella putrefaciens was found to be the most suitable, and reached a maximum power of 260.4 mW/m2 along with a penoxsulam degradation efficiency of 95%. MFC electrical performance was greatly enhanced by increasing the anode carbon felt surface area from 5 to 20 cm2, which raised the MFC electrical power from 90.3 to 240.3 mW/m2 and increased the penoxsulam degradation efficiency in parallel. The initial penoxsulam concentration in the reaction system influenced MFC power generation, where higher initial penoxsulam concentrations inhibited microbial activity, decreased the MFC power performance, and reduced the penoxsulam degradation efficiency. In addition, the MFC reaction system pH influenced MFC electrical performance, and adjusting the pH to 8 increased the peak voltage and power density to 0.687 V and 264.8 mW/m2, respectively. S. putrefaciens secretes soluble compounds to mediate electron transfer and the addition of Riboflavin (RF) increases the charge transfer efficiency. Our findings provide a basis for revealing the mechanism by which organic contaminants are degraded in MFCs, and demonstrate the feasibility of MFCs for efficient penoxsulam degradation and power generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Pramanik, S., Das, S., and Bhattacharyya, A., Photodegradation of the herbicide penoxsulam in aqueous methanol and acetonitrile, J. Environ. Sci. Health B, 2008, vol. 43, p. 569.

    Article  CAS  PubMed  Google Scholar 

  2. Sondhia, S., Rajput, S., Varma, R., and Kumar, A., Biodegradation of the herbicide penoxsulam (triazolopyrimidine sulphonamide) by fungal strains of Aspergillus in soil, Appl. Soil. Ecol., 2016, vol. 105, p. 196.

    Article  Google Scholar 

  3. Tsochatzis, E., Tzimou-Tsitouridou, R., Menkissoglu-Spiroudi, U., Karpouzas, D., and Katsantonis, D., Laboratory and field dissipation of penoxsulam, tricyclazole and profoxydim in rice paddy systems, Chemosphere, 2013, vol. 91, p. 1049.

    Article  CAS  PubMed  Google Scholar 

  4. Fotiou, T., Triantis, T., Kaloudis, T., and Hiskia, A., Photocatalytic degradation of cylindrospermopsin under UV-A, solar and visible light using TiO2. Mineralization and intermediate products, Chemosphere, 2015, vol. 119, p. S89.

    Article  CAS  PubMed  Google Scholar 

  5. Kaur, H. and Kaur, P., Effect of soil type, moisture and temperature on the dissipation of penoxsulam in soil under laboratory conditions, Environ. Contam. Toxicol. B, 2018, vol. 101, p. 803.

    Article  CAS  Google Scholar 

  6. Authority, E., Conclusion regarding the peer review of the pesticide risk assessment of the active substance penoxsulam, EFSA J., 2009, vol. 7, p. 343.

    Google Scholar 

  7. Zhuang, L., Zhou, S., Li, Y., and Yuan, Y., Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode, Bioresour. Technol., 2010, vol. 101, p. 3514.

    Article  CAS  PubMed  Google Scholar 

  8. Saratale, G., Saratale, R., Shahid, M., Zhen, G., Kumar, G., Shin, H., Choi, Y., and Kim, S., A comprehensive overview on electro-active biofilms, role of exo-electrogens and their microbial niches in microbial fuel cells (MFCs), Chemosphere, 2017, vol. 178, p. 534.

    Article  CAS  PubMed  Google Scholar 

  9. Hays, S., Zhang, F., and Logan, B., Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater, J. Power Sources, 2011, vol. 196, p. 8293.

    Article  CAS  Google Scholar 

  10. Yu, J., Seon, J., Park, Y., Cho, S., and Lee, T., Electricity generation and microbial community in a submerged-exchangeable microbial fuel cell system for low-strength domestic wastewater treatment, Bioresour. Technol., 2012, vol. 117, p. 172.

    Article  CAS  PubMed  Google Scholar 

  11. Ganesh, K. and Jambeck, J., Treatment of landfill leachate using microbial fuel cells: alternative anodes and semi-continuous operation, Bioresour. Technol., 2013, vol. 139, p. 383.

    Article  CAS  PubMed  Google Scholar 

  12. Abourached, C., English, M., and Liu, H., Wastewater treatment by microbial fuel cell (MFC) prior irrigation water reuse, J. Cleaner Prod., 2016, vol. 137, p. 144.

    Article  CAS  Google Scholar 

  13. Kumar, S., Kumar, V., Malyan, S., Sharma, J., Mathimani, T., Maskarenj, M., Ghosh, P., and Pugazhendhi, A., Microbial fuel cells (MFCs) for bioelectrochemical treatment of different wastewater streams, Fuel, 2019, vol. 254, p. 115526.

    Article  CAS  Google Scholar 

  14. Mahdi, N. and Ali, A.H., Study the relationship between bacterial growth, Congo red dye removal and voltage production using single chamber microbial fuel cell, J. Phys. Conf. Ser., 2021, vol. 1895, p. 012041.

    Article  CAS  Google Scholar 

  15. Li, X., Li, Y., Zhao, X., Zhang, X., Zhao, Q., Wang, X., and Li, Y., Restructured fungal community diversity and biological interactions promote metolachlor biodegradation in soil microbial fuel cells, Chemosphere, 2019, vol. 221, p. 735.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, Q., Zhang, L., Wang, H., Jiang, Q., and Zhu, X., Simultaneous efficient removal of oxyfluorfen with electricity generation in a microbial fuel cell and its microbial community analysis, Bioresour. Technol., 2018, vol. 250, p. 658.

    Article  CAS  PubMed  Google Scholar 

  17. Xu, Y., Zheng, T., Yong, X., Zhai, D., Si, R., Li, B., Yu, Y., and Yong, Y., Trace heavy metal ions promoted extracellular electron transfer and power generation by Shewanella in microbial fuel cells, Bioresour. Technol., 2016, vol. 211, p. 542.

    Article  CAS  PubMed  Google Scholar 

  18. Khater, D., El-khatib, K., and Hassan, R., Exploring the bioelectrochemical characteristics of activated sludge using cyclic voltammetry, Appl. Biochem. Biotechnol., 2018, vol. 184, p. 92.

    Article  CAS  PubMed  Google Scholar 

  19. Joseph, M., Haluk, B., Enrico, M., Angathevar, V., Goksel, D., and Zbigniew, L., Procedure for determining maximum sustainable power generated by microbial fuel cells, Environ. Sci. Technol., 2006, vol. 40, p. 86.

    Google Scholar 

  20. ElMekawy, A., Hegab, H., Dominguez-Benetton, X., and Pant, D., Internal resistance of microfluidic microbial fuel cell: challenges and potential opportunities, Biores. Technol., 2013, vol. 142, p. 786.

    Article  Google Scholar 

  21. Cheng, S., Liu, H., and Logan, B., Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing, Environ. Sci. Technol., 2006, vol. 40, p. 2426.

    Article  CAS  PubMed  Google Scholar 

  22. Kim, H., Park, H., Hyun, M., Chang, I., Kim, M., and Kim, B., A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciense, Enzyme Microb. Technol., 2002, vol. 30, p. 145.

    Article  CAS  Google Scholar 

  23. Pecina, A., Schwan, M., Blagotinsek, V., Rick, T., Klüber, P., Leonhard, T., Bange, G., and Thormann, K., The stand-alone PilZ-domain protein MotL specifically regulates the activity of the secondary lateral flagellar system in Shewanella putrefaciens, Front. Microbiol., 2021, vol. 54, p. 1160.

    Google Scholar 

  24. Jin, Y., Li, Z., Zhou, E., Lekbach, Y., Xu, D., Jiang, S., and Wang, F., Sharing riboflavin as an electron shuttle enhances the corrosivity of a mixed consortium of Shewanella oneidensis and Bacillus licheniformis against 316L stainless steel, Electrochim. Acta, 2019, vol. 316, p. 93.

    Article  CAS  Google Scholar 

  25. Pophali, A., Singh, S., and Verma, N., A dual photoelectrode-based double-chambered microbial fuel cell applied for simultaneous COD and Cr(VI) reduction in wastewater, Int. J. Hydrogen. Energy, 2021, vol. 46, p. 3160.

    Article  CAS  Google Scholar 

  26. Wu, S., Zhang, B., Liu, Y., Suo, X., and Li, H., Influence of surface topography on bacterial adhesion: a review, Biointerphases, 2018, vol. 13, p. 060801.

    Article  CAS  PubMed  Google Scholar 

  27. Li, J., Liu, G., Zhang, R., Luo, Y., Zhang, C., and Li, M., Electricity generation by two types of microbial fuel cells using nitrobenzene as the anodic or cathodic reactants, Biores. Technol., 2010, vol. 101, p. 4013.

    Article  CAS  Google Scholar 

  28. Mayer, F., Stöckl, M., Krieg, T., Mangold, K., and Holtmann, D., Adsorption of Shewanella oneidensis MR-1 to the electrode material activated carbon fabric, J. Chem. Technol. Biotechnol., 2018, vol. 93, p. 3000.

    Article  CAS  Google Scholar 

  29. Miran, W., Jang, J., Nawaz, M., Shahzad, A., and Lee, D., Biodegradation of the sulfonamide antibiotic sulfamethoxazole by sulfamethoxazole acclimatized cultures in microbial fuel cells, Sci. Total. Environ., 2018, vol. 627, p. 1058.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, X., Liu, Y., Zheng, L., Zhang, Q., and Li, C., Simultaneous degradation of high concentration of citric acid coupled with electricity generation in dual-chamber microbial fuel cell, Biochem. Eng. J., 2021, vol. 173, p. 108095.

    Article  CAS  Google Scholar 

  31. Wang, Y., Li, B., Cui, D., Xiang, X., and Li, W., Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell, Biosens. Bioelectron., 2014, vol. 51, p. 349.

    Article  CAS  PubMed  Google Scholar 

  32. Abd-Alla, M. and Abdul-Raouf, U., Characterization of anodic biofilm bacterial communities and performance evaluation of a mediator-free microbial fuel cell, Environ. Eng. Res., 2020, vol. 25, p. 862.

    Google Scholar 

  33. He, Z., Huang, Y., Manohar, A., and Mansfeld, F., Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell, Bioelectrochemistry, 2008, vol. 74, p. 78.

    Article  CAS  PubMed  Google Scholar 

  34. Puig, S., Serra, M., Coma, M., Cabre, M., Balaguer, M., and Colprim, J., Effect of pH on nutrient dynamics and electricity production using microbial fuel cells, Biores. Technol., 2010, vol. 101, p. 9594.

    Article  CAS  Google Scholar 

  35. Gil, G., Chang, I., Kim, B., Kim, M., Jang, J., Park, H., and Kim, H., Operational parameters affecting the performannce of a mediator-less microbial fuel cell, Biosens. Bioelectron., 2003, vol. 18, p. 327.

    Article  CAS  PubMed  Google Scholar 

  36. Yuan, Y., Zhao, B., Zhou, S., Zhong, S., and Zhuang, L., Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells, Biores. Technol., 2011, vol. 102, p. 6887.

    Article  CAS  Google Scholar 

  37. Marsili, E., Baron, D., Shikhare, I., Coursolle, D., Gralnick, J., and Bond, D., Shewanella secretes flavins that mediate extracellular electron transfer, Proc. Nat. Acad. Sci., 2008, vol. 105, p. 3968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang, Y., Ding, Y., Hu, Y., Cao, B., Rice, S., Kjelleberg, S., and Song, H., Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway, ACS Synth. Biol., 2015, vol. 4, p. 815.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, F., Xu, W., Zhang, L., Xi, L., Du, Y., Ma, L., Chen, S., and Du, D., Riboflavin as a non-quinone redox mediator for enhanced Cr(VI) removal by Shewanella putrefaciens, J. Mol. Liq., 2022, vol. 351, p. 118622.

    Article  CAS  Google Scholar 

  40. Jiang, G., Lan, M., Zhang, Z., Lv, X., Lou, Z., Xu, X., Dong, F., and Zhang, S., Identification of active hydrogen species on palladium nanoparticles for an enhanced electrocatalytic hydrodechlorination of 2, 4-dichlorophenol in water, Environ. Sci. Technol., 2017, vol. 51, p. 7599.

    Article  CAS  PubMed  Google Scholar 

  41. Sondhia, S., Rajput, S., Varma, R., and Kumar, A., Biodegradation of the herbicide penoxsulam (triazolopyrimidine sulphonamide) by fungal strains of Aspergillus in soil, Appl. Soil Ecol., 2016, vol. 105, p. 196.

    Article  Google Scholar 

  42. Chen, G., Qiao, Y., Zhang, X., Liu, F., Liao, H., Zhang, R., Dong, J., and Tao, B., Identification and characterization of herbicide penoxsulam transformation products in aqueous media by UPLC-QTOF-MS, Bull. Environ. Contam. Toxicol., 2019, vol. 102, p. 854.

    Article  CAS  PubMed  Google Scholar 

  43. Lagunas-Allué, L., Martínez-Soria, M., Sanz-Asensio, J., Salvador, A., Ferronato, C., and Chovelon, J., Degradation intermediates and reaction pathway of pyraclostrobin with TiO2 photocatalysis, Appl. Catal. B: Environ., 2012, vol. 115, p. 285.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the Natural Science Foundation of Anhui Province (1908085MD111), the Open Fund of Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention (KLFECPP201805).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiaran Qi, Yongjie Xu or Xiaohong Liu.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiaran Qi, Xu, Y., Chu, G. et al. Simultaneous Degradation of Penoxsulam with Power Generation in Microbial Fuel Cells. Russ J Electrochem 59, 817–829 (2023). https://doi.org/10.1134/S1023193523100129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523100129

Keywords:

Navigation