Skip to main content
Log in

Structure, Oxygen Mobility, and Electrochemical Characteristics of La1.7Ca0.3Ni1 ‒ xCuxO4 + δ Materials

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The Ruddlesden‒Popper phases pertain to numerous promising materials with the mixed ionic-electronic conductivity used in devices such as oxygen-conducting membranes, solid oxide fuel cells (SOFC), and electrolyzers, which operate in the intermediate temperature region. Their high total conductivity and oxygen mobility make these materials candidates for the mentioned applications. The structure, the oxygen mobility, and the electrochemical characteristics of the promising materials La1.7Ca0.3Ni1 – xCuxO4 + δ (x = 0–0.4) are studied. According to the high-precision XRD data, all synthesized materials are single-phased and have the tetragonal structure. The unit cell parameter c and the cell volume increase upon doping with copper. The content of overstoichiometric interstitial oxygen decreases with doping and the compositions with the high copper content become oxygen deficient. The samples are characterized by the nonuniform oxygen mobility. By and large, the trend for the decrease in the oxygen mobility with the increase in the Cu content is observed in the series of La1.7Ca0.3Ni1 – xCuxO4 + δ samples. By impedance spectroscopy studies, it is shown that the electrodes with the La1.7Ca0.3Ni1 – xCuxO4 + δ functional layers with the copper content x > 0.2 have a higher electrochemical activity. The factors responsible for the efficiency of electrodes are analyzed. The results obtained in this study demonstrate that La1.7Ca0.3Ni0.6Cu0.4O4 + δ materials are the candidates for the air electrodes in electrochemical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Solid oxide fuel cells: Problems, solution methods, prospects of development and commercialization. Analytical survey (e-resource), Moscow: FRCEC, 2015. https:// studylib.ru/doc/2616406/tverdooksidnye-toplivnye-e-lementy-problemy-puti-resheniya (05.07.2022).

  2. Ahmad, M.Z., Ahmad, S.H., Chen, R.S., Ismail, A.F., Hazan, R., and Baharuddin, N.A., Review on recent advancement in cathode material for lower and intermediate temperature solid oxide fuel cells application, Int. J. Hydrogen Energy, 2022, vol. 47, no. 2, p. 1103.

    Article  CAS  Google Scholar 

  3. Kilner, J.A. and Burriel, M., Materials for intermediate-temperature solid-oxide fuel cells, Ann. Rev. Mat. Res., 2014, vol. 44, no. 1, p. 365.

    Article  CAS  Google Scholar 

  4. Hanif, M.B., Motola, M., Rauf, S., Li, C.J., and Li, C.X., Recent advancements, doping strategies and the future perspective of perovskite-based solid oxide fuel cells for energy conversion, Chem. Eng. J., 2022, vol. 428, p. 132603.

    Article  Google Scholar 

  5. Han, N., Shen, Z., Zhao, X., Chen, R., and Thakur, V.K., Perovskite oxides for oxygen transport: chemistry and material horizons, Sci. Total Environ., 2022, vol. 806, no. 3, p.151213.

    Article  CAS  PubMed  Google Scholar 

  6. Tarutin, A.P., Lyagaeva, J.G., Medvedev, D.A., Bi, L., and Yaremchenko, A.A., Recent advances in layered Ln2NiO4 + δ nickelates: fundamentals and prospects of their applications in protonic ceramic fuel and electrolysis cells, J. Mater. Chem. A., 2021, vol. 9, p. 154.

    Article  CAS  Google Scholar 

  7. Sadykov, V.A., Sadovskaya, E.M., Eremeev, N.F., Skriabin, P.I., Krasnov, A.V., Bespalko, Yu.N., Pavlova S.N., Fedorova Yu.E., Pikalova E.Yu., and Shlyakhtina, A.V., Oxygen mobility in the materials for solid oxide fuel cells and catalytic membranes (review), Russ. J. Electrochem., 2019, vol. 55, p. 701.

    Article  CAS  Google Scholar 

  8. Shen, Y., Zhao, H., Xu, J., Zhang, X., Zheng, K., and Świerczek, K., Effect of ionic size of dopants on the lattice structure, electrical and electrochemical properties of La2 – xMxNiO4 + δ (M = Ba, Sr) cathode materials, Int. J. Hydrogen Energy, 2014, vol. 39, p. 1023.

    Article  CAS  Google Scholar 

  9. Wu, X., Gu, C., Cao, J., Miao, L., Fu, C., and Liu, W., Investigations on electrochemical performance of La2NiO4 + δ cathode material doped at A-site for solid oxide fuel cells, Mat. Res. Express, 2020, vol. 7, no. 2, p. 065507.

    Article  CAS  Google Scholar 

  10. Kol’chugin, A.A., Pikalova, E.Yu., Bogdanovich, N.M., Bronin, D.I., and Filonova, E.A., Electrochemical properties of doped lanthanum–nickelate-based electrodes, Russ. J. Electrochem., 2017, vol. 53, p. 826.

    Article  Google Scholar 

  11. Pikalova, E., Sadykov, V., Sadovskaya, E., Yeremeev, N., Kolchugin, A., Shmakov, A., Vinokurov, Z., Mishchenko, D., Filonova, E., and Belyaev V., Correlation between structural and transport properties of Ca-doped La nickelates and their electrochemical performance, Crystals, 2021, vol. 11, p. 297.

    Article  CAS  Google Scholar 

  12. Tealdi, C., Ferrara, C., Mustarelli, P., and Islam, M.S., Vacancy and interstitial oxide ion migration in heavily doped La2 – xSrxCoO4 ± δ, J. Mater. Chem., 2012, vol. 22, no. 18, p. 8969.

    Article  CAS  Google Scholar 

  13. Aspera, S.M., Sakaue, M., Wungu, T.D.K., Alaydrus, M., Linh, T.P.T., Kasai, H., Nakanishi, M., and Ishihara, T., Analysis of structural and electronic properties of Pr2NiO4 through first-principles calculations, J. Phys. Condens. Matter., 2012, vol. 24, p. 405504.

    Article  CAS  PubMed  Google Scholar 

  14. Forslund, R.P., Hardin, W.G., Rong, X., Abakumov, A.M., Filimonov, D., Alexander, C.T., Mefford, J.T., Iyer, H., Kolpak, A.M., Johnston, K.P., and Stevenson, K.J., Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La0.5Sr1.5Ni1 – xFexO4 ± δ Ruddlesden–Popper oxides, Nat. Commun., 2018, vol. 9, p. 3150.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Meyer, T.L., Jacobs, R., Lee, D., Jiang, L., Freeland, J.W., Sohn, C., Egami, T., Morgan, D., and Lee, H.N., Strain control of oxygen kinetics in the Ruddlesden–Popper oxide La1.85Sr0.15CuO4, Nat. Commun., 2018, vol. 9, no. 1, p. 92.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lee, D. and Lee, H.N., Controlling oxygen mobility in Ruddlesden–Popper oxides, Materials, 2017, vol. 10, no. 4, p. 368.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Allan, N.L. and Mackrodt, W.C., Oxygen ion migration in La2CuO4, Philos. Mag. A, 1991, vol. 64, p. 1129.

    Article  CAS  Google Scholar 

  18. Pikalova, E.Yu. and Kalinina, E.G., Solid oxide fuel cells based on ceramic membranes with mixed conductivity: improving efficiency, Russ. Chem. Rev., 2021, vol. 90, no. 6, p. 703.

    Article  Google Scholar 

  19. Rietveld, H.M., A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 1969, vol. 2, p. 65.

    Article  CAS  Google Scholar 

  20. FullProf Suite. Crystallographic tools for Rietveld, profile matching and integrated intensity refinements of X‑ray and/or neutron data. https:// www.ill.eu/sites/fullprof/ (05.07.2022).

  21. Wan, T.H., Saccoccio, M., Chen, C., and Ciucci, F., Influence of the discretization methods on the Distribution of Relaxation Times deconvolution: implementing radial basis functions with DRTtools, Electrochim. Acta, 2015, vol. 184, p. 483.

    Article  CAS  Google Scholar 

  22. Gavrilyuk, A.L., Osinkin, D.A., and Bronin, D.I., The use of Tikhonov regularization method for calculating the distribution function of relaxation times in impedance spectroscopy, Russ. J. Electrochem., 2017, vol. 53, p. 575.

    Article  CAS  Google Scholar 

  23. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., 1976, vol. 32, p. 7851.

    Article  Google Scholar 

  24. Tarutin, A.P., Lyagaeva, J.G., Farlenkov, A.S., Vylkov, A.I., and Medvedev, D.M., Cu-substituted La2NiO4 + δ as oxygen electrodes for protonic ceramic electrochemical cells, Ceram. Int., 2019, vol. 45, p. 16105.

    Article  Google Scholar 

  25. Sakai, M., Wang, C., Okiba, T., Soga, H., Niwa, E., and Hashimoto, T., Thermal analysis of structural phase transition behavior of Ln2Ni1 – xCuxO4 + δ (Ln = Nd, Pr) under various oxygen partial pressures, J. Therm. Anal. Calorim., 2019, vol. 135, p. 2765.

    Article  CAS  Google Scholar 

  26. Gilev, A.R., Kiselev, E.A., Zakharov, D.M., and Cherepanov, V.A., Effect of calcium and copper/iron co-doping on defect-induced properties of La2NiO4-based materials, J. Alloys Compd., 2018, vol. 27, p. 491.

    Article  Google Scholar 

  27. Nakamura, T., Oike, R., Ling, Y., Tamenori, Y., and Amezawa, K., Determining factor for the interstitial oxygen formation in Ruddlesden–Popper type La2NiO4-based oxides, Phys. Chem. Chem. Phys., 2015, vol. 18, no. 3, p. 491.

    Google Scholar 

  28. Sadykov, V.A., Eremeev, N.F., Sadovskaya, E.M., Shlyakhtina, A.V., Pikalova, E.Y., Osinkin, D.A., and Yaremchenko, A.A., Design of materials for solid oxide fuel cells, permselective membranes, and catalysts for biofuel transformation into syngas and hydrogen based on fundamental studies of their real structure, transport properties, and surface reactivity, Curr. Opin. Green Sustain. Chem., 2022, vol. 33, p. 100558.

    Article  CAS  Google Scholar 

  29. Li, X. and Benedek, N.A., Enhancement of ionic transport in complex oxides through soft lattice modes and epitaxial strain, Chem. Mater., 2015, vol. 27, p. 2647.

    Article  CAS  Google Scholar 

  30. Maksimchuk, T., Filonova, E., Mishchenko, D., Eremeev, N., Sadovskaya, E., Bobrikov, I., Fetisov, A., Pikalova, N., Kolchugin, A., Shmakov, A., Sadykov, V., and Pikalova, E., High-temperature behavior, oxygen transport properties, and electrochemical performance of Cu-substituted Nd1.6Ca0.4NiO4 + δ electrode materials, Appl. Sci., 2022, vol. 12, no. 8, p. 3747.

    Article  CAS  Google Scholar 

  31. Miyoshi, S., Furuno, T., Sangoanruang, O., Matsumoto, H., and Ishihara, T., Mixed conductivity and oxygen permeability of doped Pr2NiO4-based oxides, J. Electrochem. Soc., 2007, vol. 154, p. B57.

    Article  CAS  Google Scholar 

  32. Sadykov, V.A., Sadovskaya, E.M., Filonova, E.A., Eremeev, N.F., Belyaev, V.D., Tsvinkinberg, V.A., and Pikalova, E.Yu., Oxide ionic transport features in Gd-doped La nickelates, Solid State Ionics, 2020, vol. 357, p. 115462.

    Article  CAS  Google Scholar 

  33. Filonova, E.A., Pikalova, E.Yu., Maksimchuk, T.Y., Vylkov, A.I., Pikalov, S.M., and Maignan, A., Crystal structure and functional properties of Nd1.6Ca0.4Ni1 – yCuyO4 + δ as prospective cathode materials for intermediate temperature solid oxide fuel cells, Int. J. Hydrogen Energy, 2021, vol. 46, no. 32, p. 17037.

    Article  CAS  Google Scholar 

  34. Escudero, M.J., Aguadero, A., Alonso, J.A., and Daza, L.A., Kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy, J. Electroanal. Chem., 2007, vol. 611, no. 1–2, p. 107.

    Article  CAS  Google Scholar 

  35. Antonova, E.P., Khodimchuk, A.V., Usov, G.R., Tropin, E.S., Farlenkov, A.S., Khrustov, A.V., and Ananyev, M.V., EIS analysis of electrode kinetics for La2NiO4 cathode in contact with Ce0.8Sm0.2O1.9 electrolyte: From DRT analysis to physical model of the electrochemical process, J. Solid State Electrochem., 2019, vol. 23, p. 1279.

    Article  CAS  Google Scholar 

  36. Li, Z., Haugsrud, R., and Norby, T., Oxygen bulk diffusion and surface exchange in Sr-substituted La2NiO4 + δ, Solid State Ionics, 2011, vol. 184, no. 1, p. 42.

    Article  CAS  Google Scholar 

  37. Kolchugin, A.A., Pikalova, E.Yu., Bogdanovich, N.M., and Bronin, D.I., The effect of copper on the properties of La1.7Ca0.3NiO4 + δ-based cathodes for solid oxide fuel cells, Russ. J. Electrochem., 2015, vol. 51, p. 483.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the Organizing Committee of the 16th International Meeting “Fundamental Problems of Solid State Ionics” (June 27–July 03, 2022, Chernogolovka, Russia). We would like to thank D.A. Malyshkin (Laboratory of Hydrogen Energetics, Ural Federal University) for his help in carrying out the measurements on the scanning electron microscope.

Funding

The synthesis and the studies of structural and electrochemical properties of materials were carried out in the frames of the state funding for the Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences (nos. 122020100209-3 and 122020100324-3). The studies of the oxygen mobility were carried out within the frames of state funding for the Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (nos. АААА-А21-121011390009-1 and АААА-А21-121011390007-7).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Sadykov or E. Yu. Pikalova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

Delivered at the 16th International Conference “Basic Problems of Solid-State Ionics,” Chernogolovka, June 27–July 3, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadykov, V.A., Sadovskaya, E.M., Eremeev, N.F. et al. Structure, Oxygen Mobility, and Electrochemical Characteristics of La1.7Ca0.3Ni1 ‒ xCuxO4 + δ Materials. Russ J Electrochem 59, 37–48 (2023). https://doi.org/10.1134/S1023193523010068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523010068

Keywords:

Navigation