Skip to main content
Log in

Single Chamber Membrane Less Microbial Fuel Cell for Simultaneous Energy Generation and Lead Removal

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this study, the performance of a single chamber membrane less microbial fuel cell with an iodine-doped polypyrrole-coated graphite felt anode that uses lead as the electron acceptor at the cathode was studied. The removal oflead for concentrations viz, 10, 20, and 30 ppm, were studied using pure culture of Shewanella putrefaciens and removal of above 85% was obtained at anaerobic conditions. The maximum possible power density, coloumbic efficiency, and TOC removal at 20 ppm Pb (maximum tolerable concentration) were obtained as 2.32 W/m2, 17.797 and 93.3%, respectively. A closed circuit voltage of 0.779 V was attained using a mixed culture for 20 ppm Pb and was found to be higher than that of the pure culture (0.752 V). These results show that wastewater containing heavy metal can be treated in microbial fuel cells with simultaneous energy generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Abourached, C., Catal, T., and Liu, H., Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production, Water Res., 2014, vol. 51, p. 228. https://doi.org/10.1016/j.watres.2013.10.062

    Article  CAS  PubMed  Google Scholar 

  2. Xia, C., Zhang, D., and Pedrycz, W., Models for microbial fuel cells: a critical review, J. Power Sources, 2018, vol. 373, p. 119. https://doi.org/10.1016/j.jpowsour.2017.11.001

    Article  CAS  Google Scholar 

  3. Islam, M.A., Ethiraj, B., and Cheng, C.K., Electrogenic and antimethanogenic properties of bacillus cereus for enhanced power generation in anaerobic sludge-driven microbial fuel cells, Energy Fuels, 2017, vol. 31, p. 6132. https://doi.org/10.1021/acs.energyfuels.7b00434

    Article  CAS  Google Scholar 

  4. Behera, M. and Ghangrekar, M.M., Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH, Bioresour. Technol., 2009, vol. 100, p. 5114. https://doi.org/10.1016/j.biortech.2009.05.020

    Article  CAS  PubMed  Google Scholar 

  5. Das, S. and Mangwani, N., Recent developments in microbial fuel cells: a review, J. Sci. Ind. Res. (India), 2010, vol. 69, p. 727

    CAS  Google Scholar 

  6. Reguera, G., Nevin, K.P., and Nicoll, J.S., Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells, Appl. Environ. Microbiol., 2006, vol. 72, p. 7345. https://doi.org/10.1128/AEM.01444-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bond, D.R., Holmes, D.E., and Tender, L.M., Electrode-reducing microorganisms that harvest energy from marine sediments, Science, 2002, vol. 295, p. 483. https://doi.org/10.1126/science.1066771

    Article  CAS  PubMed  Google Scholar 

  8. Kim, B.H., Ikeda, T., and Park, H.S., Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors, Biotechnol. Tech., 1999, vol. 13, p. 475. https://doi.org/10.1023/A:1008993029309

    Article  CAS  Google Scholar 

  9. Kim, H.J., Park, H.S., and Hyun, M.S., A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens, Enzyme Microb. Technol., 2002, vol. 30, p. 145. https://doi.org/10.1016/S0141-0229(01)00478-1

    Article  CAS  Google Scholar 

  10. Kim, B.H., Park, H.S., and Kim, H.J., Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell, Appl. Microbiol. Biotechnol., 2004, vol. 63, p. 672. https://doi.org/10.1007/s00253-003-1412-6

    Article  CAS  PubMed  Google Scholar 

  11. Rabaey, K., Ossieur, W., and Verhaege, M., Continuous microbial fuel cells convert carbohydrates to electricity, Water Sci. Technol., 2005, vol. 52, p. 515.

    Article  CAS  Google Scholar 

  12. Mustakeem, Electrode materials for microbial fuel cells: nanomaterial approach, Mater. Renewable Sustainable Energy, 2015, vol. 4, p. 1. https://doi.org/10.1007/s40243-015-0063-8

  13. Jadhav, U. and Hocheng, H., Hydrometallurgical recovery of metals from large printed circuit board pieces, Sci. Rep., 2015, vol. 5, p. 1. https://doi.org/10.1038/srep14574

    Article  CAS  Google Scholar 

  14. Junxian, H., Zhongliang, and Peiyuan, Z., A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes, J. Power Sources, 2012, vol. 224, p. 139. https://doi.org/10.1016/j.jpowsour.2012.09.091

    Article  CAS  Google Scholar 

  15. Li, X.G., Li, J., and Huang, M.R., Facile optimal synthesis of inherently electroconductive polythiophene nanoparticles, Eur. J. Chem. A, 2009, vol. 15, p. 6446. https://doi.org/10.1002/chem.200900181

    Article  CAS  Google Scholar 

  16. Sumisha, A. and Haribabu, K., Modification of graphite felt using nano polypyrrole and polythiophene for microbial fuel cell applications—a comparative study, Int. J. Hydrogen Energy, 2018, vol. 43, p. 3308. https://doi.org/10.1016/j.ijhydene.2017.12.175

    Article  CAS  Google Scholar 

  17. Mathuriya, A.S. and Yakhmi, J.V., Microbial fuel cells to recover heavy metals, Environ. Chem. Lett., 2014, vol. 12, p. 483. https://doi.org/10.1007/s10311-014-0474-2

    Article  CAS  Google Scholar 

  18. Li,Y., Wu, Y., and Puranik, S., Metals as electron acceptors in single-chamber microbial fuel cells, J. Power Sources, 2014, vol. 269, p. 430. https://doi.org/10.1016/j.jpowsour.2014.06.117

    Article  CAS  Google Scholar 

  19. Sahoo, S., Dhibar, S., and Das, C.K., Facile synthesis of polypyrrole nanofiber and its enhanced electrochemical performances in different electrolytes, Express Polym. Lett., 2012, vol. 6, p. 965. https://doi.org/10.3144/expresspolymlett.2012.102

    Article  CAS  Google Scholar 

  20. Liu, Z., Poyraz, S., and Liu, Y., Seeding approach to noble metal decorated conducting polymer nanofiber network, Nanoscale, 2012, vol. 4, p. 106. https://doi.org/10.1039/c1nr10994d

    Article  CAS  PubMed  Google Scholar 

  21. Bazaka, K. and Jacob, M., Effects of iodine doping on optoelectronic and chemical properties of polyterpenol thin films., Nanomaterials, 2017, vol. 7, p. 11. https://doi.org/10.3390/nano7010011

    Article  CAS  PubMed Central  Google Scholar 

  22. Yuan, H., Hou, Y., and Abu-Reesh, I.M., Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: a review, Mater. Horizons, 2016, vol. 3, p. 382. https://doi.org/10.1039/c6mh00093b

    Article  CAS  Google Scholar 

  23. Wu, Y., Zhao, X., and Jin, M., Copper removal and microbial community analysis in single-chamber microbial fuel cell, Bioresour. Technol., 2018, vol. 253, pp. 372–377. https://doi.org/10.1016/j.biortech.2018.01.046

    Article  CAS  PubMed  Google Scholar 

  24. Singh, S., Modi, A., and Verma, N., Enhanced power generation using a novel polymer-coated nanoparticles dispersed-carbon micro-nanofibers-based air-cathode in a membrane-less single chamber microbial fuel cell, Int. J. Hydrogen Energy, 2015, vol. 41, p. 1237. https://doi.org/10.1016/j.ijhydene.2015.10.099

    Article  CAS  Google Scholar 

  25. Praveena, G. and Indumathi, M.N., Hexavalent chromium reduction and energy recovery by using dual-chambered microbial fuel cell, Water Sci. Tech., 2015, vol. 71, no. 3, p. 353. https://doi.org/10.2166/wst.2014.524

    Article  CAS  Google Scholar 

  26. Zhang, B.G., Zhou, S.G., Zhao, H.Z., Shi, C.H., Kong, L.C., Sun, J.J., Yang, Y., and Ni, J.R., Factors affecting the performance of microbial fuel cells for sulfide and vanadium(V) treatment, Bioprocess Biosyst. Eng., 2010, vol. 33, p. 194.

    Google Scholar 

  27. Wang, Y.H., Wang, B.S., Pan, B., Chen, Q.Y., and Yan, W., Electricity production from a bio-electrochemical cell for silver recovery in alkaline, Appl. Energy, 2013, vol. 112, p. 1337.

    Article  CAS  Google Scholar 

  28. Liping, H., Binglin, Y., Dan, W., and Xie, Q., Complete cobalt recovery from lithium cobalt oxide in self-driven microbial fuel cell – microbial electrolysis cell systems, J. Power Sources, 2014, vol. 25, p. 54.

    Google Scholar 

  29. Tian-shun, S., Yuejuan, J., Jingjing, B., Dongzhou, K., and Jingjing, X., Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell, J. Hazard. Mater., 2016, vol. 317, pp. 73–80. http://dx.doi.org/doi:10.1016/j.jhazmat.2016.05.055

    Article  Google Scholar 

  30. Gupta, S., Ashish, Y., and Nishith, V., Simultaneous Cr(VI) reduction and bioelectricity generation using microbial fuel cell based on alumina–nickel nanoparticles-dispersed carbon nanofiber electrode, Chem. Eng. J., 2016, vol. 307, pp. 729–738.

    Article  Google Scholar 

  31. Kim, C., Cho Rong, L., Young Eun, S., Jinhee, H., Sung, M., Dong-Ha, L., Jaehoon, C., Chulhwan, P., Min, J., and Jung Rae, K., Hexavalent chromium as a cathodic electron acceptor in a bipolar membrane microbial fuel cell with the simultaneous treatment of electroplating, Chem. Eng. J., 2017, vol. 328, no. 15, pp. 703–707. https://doi.org/10.1016/j.cej.2017.07.077

  32. Wu, Y., Zhao, X., Jin, M., Li, Y., Li, S., and Kong, F., Copper removal and microbial community analysis in single-chamber microbial fuel cell, Bioresour Technol., 2018, vol. 253, p. 372.https://doi.org/10.1016/j.biortech.2018.01.046

  33. Rajkumar, R., Gnana Prakash, D.M., Haribabu, K, and Sumisha, A., A study on polythiophene modified carbon cloth as anode in microbial fuel cell for lead removal, Arab. J. Sci. Eng., 2021, no. 7. https://doi.org/10.1007/s13369-356021-05402-3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Haribabu.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumisha, A., Harshini, V., Das, A. et al. Single Chamber Membrane Less Microbial Fuel Cell for Simultaneous Energy Generation and Lead Removal. Russ J Electrochem 58, 143–150 (2022). https://doi.org/10.1134/S1023193522020094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522020094

Keywords:

Navigation