Skip to main content
Log in

Layered Solid-Electrolyte Membranes Based on Zirconia: Production Technology

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A solid electrolyte membrane is a key part of a solid oxide fuel cell (SOFC). This paper presents the results of our study of the effects of particle size of the starting powders, composition of organic additives in suspension, and process parameters on the quality of three-layer ceramic sheets of solid electrolyte with dimensions of 100 × 100 mm and a thickness of 0.15 mm, made by casting on a moving tape. The inner layer was 10Sc1YSZ (10 mol % Sc2O3, 1 mol % Y2O3, 89 mol % ZrO2)—a material with the highest oxygen ion conductivity among zirconia-based solid solutions. 6ScSZ was chosen for the outer layers (6 mol % Sc2O3, 94 mol % ZrO2). The three-layer architecture of the solid electrolyte membranes allows the improvement of the mechanical characteristics while maintaining the required functional properties (primarily, anion conductivity). This study is devoted to optimization of the production technology of these layered membranes by tape casting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Tiunova, O.V., Zadorozhnaya, O.Yu., Nepochatov, Yu.K., Burmistrov, I.N., Kuritsyna, I.E., and Bredikhin, S.I., Ceramic membranes based on scandium-stabilized ZrO2 obtained by tape casting technique, Russ. J. Electrochem., 2014, vol. 50, p. 719.

    Article  CAS  Google Scholar 

  2. Minh, N.Q., Ceramic fuel cells, J. Am. Ceram. Soc., 1993, vol. 76, p. 563.

    Article  CAS  Google Scholar 

  3. Andujar, J.M. and Segura, F., Fuel cells: history and updating. A walk along two centuries, Renewable Sustainable Energy Rev., 2009, vol. 13, p. 2309.

    Article  CAS  Google Scholar 

  4. Ormerod, R.M., Solid oxide fuel cells, Chem. Soc. Rev., 2003, vol. 32, p. 17.

    Article  CAS  Google Scholar 

  5. Singhal, S.C. and Kendall, K., High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Oxford: Elsevier, 2003, p. 424.

    Google Scholar 

  6. Cheng, J.G., Fu, Q.X., Liu, X.Q., et al., Key Eng. Mater., 2202, vols. 224–226, p. 173.

  7. Fu, C.J., Chan, S.H., Liu, Q.L., et al., Int. J. Hydrogen Energy, 2010, vol. 35, p. 301.

    Article  CAS  Google Scholar 

  8. Costa, R., Hafsaoui, J., Almeida De Oliveira, A.P., et al., J. Appl. Electrochem., 2009, vol. 39, p. 485.

    Article  CAS  Google Scholar 

  9. Gurauskis, J., Sanchez-Herencia, A.J., and Baudin, C., Joining green ceramic tapes made from water-based slurries by applying low pressures at ambient temperature, J. Eur. Ceram. Soc., 2005, vol. 25, p. 3403.

    Article  CAS  Google Scholar 

  10. Timurkutluk, B., The role of lamination conditions on electrochemical and mechanical performance of ceramic electrolytes for solid oxide fuel cells, Ceram. Int., 2015, vol. 41, p. 2057.

    Article  CAS  Google Scholar 

  11. Capdevila, X.G., Folch, J., Calleja, A., et al., High-density YSZ tapes fabricated via the multi folding lamination process, Ceram. Int. 2009, vol. 35, p. 1219.

    Article  CAS  Google Scholar 

  12. Park, H.-G., Moon, H., Park, S.-C., et al., Performance improvement of anode-supported electrolytes for planar solid oxide fuel cells via a tape-casting/lamination/co-firing technique, J. Power Sources, 2010, vol. 195, p. 2463.

    Article  CAS  Google Scholar 

  13. Lee, S.-H., Messing, G.L., and Awano, M., Sintering arches for co-sintering camber-free SOFC multilayers, J. Am. Ceram. Soc., 2008, vol. 91, p. 421.

    Article  CAS  Google Scholar 

  14. Agarkov, D.A., Bredikhin, S.I., Burmistrov, I.N., Kuritsyna, I.E., Nepochatov, Yu.K., and Tiunova, O.V., Membrana tverdogo elektrolita dlya tverdookisnykh toplivnykh elementov (Solid Electrolyte Membrane for Solid Oxide Fuel Cells), RF Patent 161024, 2016.

  15. Goulart, C. and de Souza, D., Critical analysis of aqueous tape casting, sintering, and characterization of planar yttria-stabilized zirconia electrolytes for SOFC, Int. J. Appl. Ceram. Technol., 2017, p. 1.

Download references

Funding

This study was financially supported by the Russian Scientific Foundation (grant no. 17-79-30071 “Development of scientifically sound ways of optimization of the power and weight and size characteristics of SOFC batteries of planar design and creation of a fuel processor for highly efficient transport and stationary power plants.”)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Zadorozhnaya.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by L. Smolina

Published on the basis of materials of the 5th All-Russia Conference “Fuel Cells and Power Plants Based on Them” (with international participation), Suzdal, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zadorozhnaya, O.Y., Agarkova, E.A., Tiunova, O.V. et al. Layered Solid-Electrolyte Membranes Based on Zirconia: Production Technology. Russ J Electrochem 56, 124–131 (2020). https://doi.org/10.1134/S1023193520020123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520020123

Keywords:

Navigation