Skip to main content
Log in

A Rechargeable Aqueous Lithium Ion Battery with High Rate Capability Based on Metallic Cadmium and LiCoO2

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

An aqueous rechargeable lithium ion battery with metallic cadmium as the negative electrode, LiCoO2 nanoparticles as the positive electrode, and a neutral aqueous electrolyte solution of 0.5 M Li2SO4 and 10 mM Cd(Ac)2 is reported. It has good electrochemical performance. The calculated energy density based on the practically available capacity of the two electrodes is 72 W h kg–1; this is comparable to that of Ni–Cd batteries. The positive mercury electrode of the Weston cell is replaced by a LiCoO2 electrode, the negative cadmium amalgam by a plain cadmium metal electrode. Mercury is completely avoided. Compared with Ni–Cd batteries an alkaline electrolyte solution is not needed making the system more environment-friendly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. In the International Weston normal cell approx. 15 wt % cadmium in mercury and a cadmium sulphate-saturated electrolyte solution are used.

  2. The anodic current is not limited by diffusion, thus there are only peaks with both setups limited by the cathodic electrode process.

REFERENCES

  1. Wang, X.W., Wang, F.X., Wang, L., Li, M., Wang, Y., Chen, B., Zhu, Y., Fu, L., Zha, L., Zhang, L., Wu, Y.P., and Huang, W., An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior, Adv. Mater., 2016, vol. 28, p. 4904.

    Article  CAS  Google Scholar 

  2. Choi, N.S., Chen, Z., Freunberger, S.A., Ji, X., Sun, Y.K., Amine, K., Yushin, G., Nazar, L.F., Cho, J., and Bruce, P.G., Challenges facing lithium batteries and electrical double-layer capacitors, Angew. Chem. Int. Ed., 2012, vol. 51, p. 9994.

    Article  CAS  Google Scholar 

  3. Wang, X.W., Li, M.X., Wang, Y.F., Chen, B.W., Zhu, Y.S., and Wu, Y.P., A Zn-NiO rechargeable battery with long lifespan and high energy density, J. Mater. Chem. A, 2015, vol. 3, p. 8280.

    Article  CAS  Google Scholar 

  4. Holze, R., Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series, Group IV: Physical Chemistry, vol. 9: Electrochemistry, subvol. B: Ionic Conductivities of Liquid Systems, Part 2: Deep Eutectic Solvents and Electrolyte Solutions, Martienssen, W. and Lechner, M.D., Eds., Berlin: Springer-Verlag, 2016.

  5. Wang, F.X., Liu, Y., Wang, X.W., Chang, Z., Wu, Y.P., and Holze, R., Aqueous rechargeable battery based on zinc and a composite of LiNi1/3Co1/3Mn1/3O2, ChemElectroChem., 2015, vol. 2, p. 1024.

    Article  CAS  Google Scholar 

  6. Wang, F.X., Yu, F., Wang, X., Chang, Z., Fu, L.J., Zhu, Y.S., Wen, Z.B., Wu, Y.P., and Huang, W., Aqueous rechargeable zinc/aluminum ion battery with good cycling performance, ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 9022.

    Article  CAS  Google Scholar 

  7. Weston, E., US Patent 494827, Apr. 4, 1893.

  8. Bard, A.J., Inzelt, G., and Scholz, F., Electrochemical Dictionary, 2nd ed., Heidelberg: Springer-Verlag, 2012.

    Book  Google Scholar 

  9. Liu, Y., Wen, Z.B., Wu, X.W., Wang, X.W., Wu, Y.P., and Holze, R., An acid-free rechargeable battery based on PbSO4 and spinel LiMn2O4, Chem. Commun., 2014, vol. 50, p. 13714.

    Article  CAS  Google Scholar 

  10. Gao, P., Wang, Y., Zhang, Q., Chen, Y., Bao, D., Wang, L.Q., Sun, Y.Z., Li, G.B., and Zhang, M.L., Cadmium hydroxide nanowires—new high capacity Ni–Cd battery anode materials without memory effect, J. Mater. Chem., 2012 vol. 22, p. 13922.

    Article  CAS  Google Scholar 

  11. Zhang, J.X., Yu, J.X., and Cha, C., Gas consumption reactions and cycling characteristics of improved sealed Ni–Cd batteries, Int. J. Electrochem. Sci., 2012, vol. 7, p. 10233.

    CAS  Google Scholar 

  12. Pan, J.Q., Yang, M., Jia, X., and Sun, Y.Z., The principle and electrochemical performance of a single flow Cd–PbO2 battery, J. Electrochem. Soc., 2013, vol. 160, p. A1146.

    Article  CAS  Google Scholar 

  13. Zeng, Y.K., Zhao, T.S., Zhou, X.L., Wei, L., and Jiang, H.R., A low-cost iron–cadmium redox flow battery for large-scale energy storage, J. Power Sources, 2016, vol. 330, p. 55.

    Article  CAS  Google Scholar 

  14. Solucorp Industries Ltd., as published in: Business Wire 2006-10-19.

  15. Randhawa, N.S., Gharami, K., and Kumar, M., Leaching kinetics of spent nickel-cadmium battery in sulphuric acid, Hydrometallurgy, 2016, vol. 165, p. 191.

    Article  CAS  Google Scholar 

  16. Liu, Y., Gao, S., Holze, R., and Shukla, A.K., The cadmium electrode revisited: kinetic data, J. Electrochem. Soc., 2017, vol. 164, p. A3858.

    Article  CAS  Google Scholar 

  17. Tang, W., Tian, S., Liu, L.L., Li, L., Zhang, H.P., Yue, Y.B., Bai, Y., Wu, Y.P., and Zhu, K., Nanochain LiMn2O4 as ultra-fast cathode material for aqueous rechargeable lithium batteries, Electrochem. Commun., 2011, vol. 13, p. 205.

    Article  CAS  Google Scholar 

  18. Tegart, W.J.M.G., The Electrolytic and Chemical Polishing of Metals in Research and Industry, London: Pergamon Press, 1959.

    Google Scholar 

  19. Xiao, X.L., Yang, L.M., Zhao, H., Hu, Z.B., and Li, Y.D., Facile synthesis of LiCoO2 nanowires with high electrochemical performance, Nano Res., 2012, vol. 5, p. 27.

    Article  CAS  Google Scholar 

  20. Wang, G.J., Qu, Q.T., Wang, B., Shi, Y., Tian, S., Wu, Y.P., and Holze, R., Electrochemical behavior of LiCoO2 in a saturated aqueous Li2SO4 solution, Electrochim. Acta, 2009, vol. 54, p. 1199.

    Article  CAS  Google Scholar 

  21. Chang, Z., Wang, X.J., Yang, Y.Q., Gao, J., Li, M.X., Liu, L.L., and Wu, Y.P., Rechargeable Li//Br battery: a promising platform for post lithium ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 19444.

    Article  CAS  Google Scholar 

  22. Andrei, P., Zheng, J.P., Hendrickson, M., and Plichta, E.J., Modeling of Li-air batteries with dual electrolyte, J. Electrochem. Soc., 2012, vol. 159, p. A770.

    Article  CAS  Google Scholar 

  23. Trahan, M.J., Mukerjee, S., Plichta, E.J., Hendrickson, M.A., and Abrahama, K.M., Studies of Li-air cells utilizing dimethyl sulfoxide-based electrolyte, J. Electrochem. Soc., 2013, vol. 160, p. A259.

    Article  CAS  Google Scholar 

  24. Chang, Z., Yang, Y.Q., Li, M.X., Wang, X.W., and Wu, Y.P., Studies of Li–air cells utilizing dimethyl sulfoxide-based electrolyte, J. Mater. Chem. A, 2014, vol. 2, p. 10739.

    Article  CAS  Google Scholar 

  25. Liu, Y., Wiek, A., Dzhagan, V., and Holze, R., Improved electrochemical behavior of amorphous carbon-coated copper/CNT composites as negative electrode material and their energy storage mechanism, J. Electrochem. Soc., 2016, vol. 163, p. A1247.

    Article  CAS  Google Scholar 

  26. Yan, J., Fan, Z.J., Wei, T., Qian, W.Z., Zhang, M.L., and Wei, F., Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes, Carbon, 2010, vol. 48, p. 3825.

    Article  CAS  Google Scholar 

  27. Lasia, A., Electrochemical Impedance Spectroscopy and its Applications, New York: Springer, 2014.

    Book  Google Scholar 

  28. Holze, R., Electrode impedance measurements: a versatile tool for electrochemists, Bull. Electrochem., 1994, vol. 10, p. 56.

    CAS  Google Scholar 

  29. Barsoukov, E. and Macdonald, J.R., Impedance Spectroscopy, Hoboken: Wiley-Intersci., 2005.

    Book  Google Scholar 

  30. Shi, J. and Sun, W., Equivalent circuits fitting of electrochemical impedance spectroscopy for corrosion of reinforcing steel in concrete, Corr. Sci. Prot. Technol., 2011, vol. 23, p. 387.

    CAS  Google Scholar 

  31. Córdoba-Torres, P., Mesquita, T.J., and Nogueira, R.P., Relationship between the origin of constant-phase element behavior in electrochemical impedance spectroscopy and electrode surface structure, J. Phys. Chem. C, 2015, vol. 119, p. 4135.

    Article  Google Scholar 

  32. Hirschorn, B., Orazem, M.E., Tribollet, B., Vivier, V., Frateur, I., and Musiani, M., Constant-phase-element behavior caused by resistivity distributions in films. I. Theory, J. Electrochem. Soc., 2010, vol. 157, p. C452.

    Article  CAS  Google Scholar 

  33. Musiani, M., Orazem, M.E., Pébère, N., Tribollet, B., and Vivier, V., Constant-phase-element behavior caused by coupled resistivity and permittivity distributions in films, J. Electrochem. Soc., 2011, vol. 158, p. C424.

    Article  CAS  Google Scholar 

  34. Burashnikova, M.M., Kazarinov, I.A., and Zotova, I.V., Nature of contact corrosion layers on lead alloys: a study by impedance spectroscopy, J. Power Sources, 2012, vol. 207, p. 19.

    Article  CAS  Google Scholar 

  35. Wang, X.J., Qu, Q.T., Hou, Y.Y., Wang, F.X., and Wu, Y.P., An aqueous rechargeable lithium battery of high energy density based on coated Li metal and LiCoO2, Chem. Commun., 2013, vol. 49, p. 6179.

    Article  CAS  Google Scholar 

  36. Ruffo, R., Wessells, C., Huggins, R.A., and Cui, Y., Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes, Electrochem. Commun., 2009, vol. 11, p. 247.

    Article  CAS  Google Scholar 

  37. Zhang, B.H., Liu, Y., Wu, X.W., Yang, Y.Q., Chang, Z., Wen, Z.B., and Wu, Y.P., An aqueous rechargeable battery based on zinc anode and Na0.95MnO2, Chem. Commun., 2014, vol. 50, p. 1209.

    Article  CAS  Google Scholar 

  38. Okubo, M., Hosono, E., Kim, J., Enomoto, M., Kojima, N., Kudo T., Zhou, H.S., and Honma, I., Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode, Am. J. Chem. Soc., 2007, vol. 129, p. 7444.

    Article  CAS  Google Scholar 

  39. Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions, Houston: National Association of Corrosion Engineers, 1974.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Preparation of this report has been supported in various ways by the Chinese Scholarship Council, Alexander von Humboldt-Foundation, Deutscher Akademischer Austauschdienst, Fonds der Chemischen Industrie, and Deutsche Forschungsgemeinschaft. L. Mertens and M. Mehring furnished XRD data, S. Schulze supplied SEM measurements, their help is gratefully acknowledged.

Funding

Further support was provided by research grant no. 26455158 of St. Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Holze.

Ethics declarations

HIGHLIGHTS

• An aqueous rechargeable Cd//LiCoO2 battery was assembled.

• A neutral electrolyte solution of 0.5 M Li2SO4 and 10 mM Cd(Ac)2 was used.

Additional information

This paper is dedicated to the 80th anniversary of Professor V.V. Malev who has made a considerable contribution into modern directions of electrochemistry.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu Liu, Gao, S. & Holze, R. A Rechargeable Aqueous Lithium Ion Battery with High Rate Capability Based on Metallic Cadmium and LiCoO2. Russ J Electrochem 55, 1068–1076 (2019). https://doi.org/10.1134/S1023193519110107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519110107

Keywords:

Navigation