Skip to main content
Log in

Testing Reactivity Descriptors for the Electrocatalytic Activity of OPG Hybrid Electrodes Modified with Iron Macrocyclic Complexes and MWCNTs for the Oxidation of Reduced Glutathione in Basic Medium

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In this work we have tested the Fe(III)/(II) redox potential of the catalysts as a reactivity descriptors of iron macrocyclic complexes (FeN4) adsorbed on multi-walled carbon nanotubes (MWCNTs) and deposited on ordinary pyrolytic graphite (OPG). The reaction examined is the oxidation of glutathione (GSH) a biologically important molecule. The experiments were conducted in 0.1 M NaOH and kinetic measurements were performed on MWCNT previously modified with FeN4 macrocycle complexes. This modified FeN4–MWCNTs were deposited on pristine OPG electrodes. From previous work it is known that for FeN4 complexes directly adsorbed on OPG, the activity as (log i)E plotted versus the Fe(II)/(I) redox potential follows a volcano correlation for the oxidation of glutathione. We wanted to test these correlations on hybrid electrodes containing MWCNTs and essentially the carbon nanotubes have no influence in these correlations and the redox potentials a are good reactivity descriptors, regardless of the way the FeN4 catalysts are attached to the electrode. Further, we find volcano correlations when using the Fe(II)/(I) and the Fe(III)/(II) redox potentials as reactivity descriptors. The volcano correlation when using the Fe(III)/(II) redox potential exhibits a maximum at E° = –0.26 V vs SCE which is close to the potential for comparing the different activities. This interesting result seems to indicate that the maximum cannot be explained only in terms of the Sabatier principle where θRS, the surface coverage of adsorbed intermediate is close to 0.5 but instead to a surface coverage of active sites θFe(II) equal to 0.5, which occurs at the Fe(III)/(II) formal potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Meister, A., Glutathione metabolism and its selective modification, J. Biol. Chem., 1988, vol. 263, p. 17205.

    CAS  PubMed  Google Scholar 

  2. Meister, A. and Anderson, M.E., Glutathione, Annu. Rev. Biochem., 1983, vol. 52, p. 711. https://doi.org/10.1146/annurev.bi.54.070183.003431

    Article  CAS  PubMed  Google Scholar 

  3. Ziegler, D.M., Role of reversible oxidation-reduction of enzyme thiols-disulfides in metabolic regulation, Annu. Rev. Biochem., 1985, vol. 54, p. 305. https://doi.org/10.1146/annurev.bi.54.070185.001513

    Article  CAS  PubMed  Google Scholar 

  4. Sehlotho, N., Nyokong, T., Zagal, J.H., and Bedioui, F., Electrocatalysis of oxidation of 2-mercaptoethanol, l‑cysteine and reduced glutathione by adsorbed and electrodeposited cobalt tetra phenoxypyrrole and tetra ethoxythiophene substituted phthalocyanines, Electrochim. Acta, 2006, vol. 51, p. 5125. https://doi.org/10.1016/j.electacta.2006.03.049

    Article  CAS  Google Scholar 

  5. Masella, R. and Mazza, G., Glutathione and Sulfur Amino Acids in Human Health and Disease, New York: Wiley, 2009. https://doi.org/10.1002/9780470475973

    Book  Google Scholar 

  6. Chakravarthi, S., Jessop, C.E., and Bulleid, N.J., The role of glutathione in disulphide bond formation and endoplasmic-reticulum generated oxidative stress, EMBO Rep., 2006, vol. 7, p. 271. https://doi.org/10.1038/sj.embor.7400645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tummanapelli, A.K. and Vasudevan, S., An initio MD simulation of the Brönsted acidity of glutathione in aqueous solutions: predicting pKa shifts of the cysteine residue, J. Phys. Chem. B, 2015, vol. 119, p. 15353. https://doi.org/10.1021/acs.jpcb.5b10093

    Article  CAS  PubMed  Google Scholar 

  8. Gutierrez, C., Paez, M., and Zagal, J.H., Reactivity descriptors for iron porphyrins and iron phthalocyanines as catalysts for the electrooxidation of reduced glutathione, J. Solid State Electrochem., 2016, vol. 20, p. 3199. https://doi.org/10.1007/s10008-016-3396-z

    Article  CAS  Google Scholar 

  9. Zagal, J.H., Aguirre, M.J., and Parodi, C.G., Electrocatalytic activity of vitamin B12 adsorbed on graphite electrode for the oxidation of cysteine and glutathione and the reduction of cystine, J. Electroanal. Chem., 1994, vol. 374, p. 215.

    Article  CAS  Google Scholar 

  10. Sekhosana, K.E., Antunes, E., Khene, S., D’Souza, S., and Nyokong, T., Fluorescence behavior of glutathione capped CdTe@ZnS quantum dots chemically coordinated to zinc octacarboxy phthalocyanines. J. Lumin., 2013, vol. 136, p. 255. https://doi.org/10.1016/j.poly.2011.10.024

    Article  CAS  Google Scholar 

  11. Porras Gutierrez, A., Rangel Argote, M., Griveau, S., Zagal, J.H., Gutierrez-Granados, S., Alatorre Ordaz, A., and Bedioui, F., Catalytic activity of electrode materials based on polypyrrole, multi-wall carbon nanotubes and Cobal phthalocyanine for the electrooxidation of glutathione and L-cysteine, J. Chilean Chem. Soc., 2012, vol. 57, p. 1244. https://doi.org/10.4067/S0717-97072012000300010

    Article  Google Scholar 

  12. Tang, H., Chen, J., Nie, J., Yao, S., and Kuang, Y., Electrochemical oxidation of glutathione at well-aligned carbon nanotube array electrode, Electrochim. Acta, 2006, vol. 51, p. 3046. https://doi.org/10.1016/j.electacta.2005.08.038

    Article  CAS  Google Scholar 

  13. Safavi, A., Maleki, N., Farjami, E., and Mahyari, F.A., Simultaneous electrochemical determination of glutathione and glutathione disulfide at a nanoscale copper hydroxide composite carbon ionic liquid electrode, Anal. Chem., 2009, vol. 81, p. 7538. https://doi.org/10.1021/ac900501j

    Article  CAS  PubMed  Google Scholar 

  14. Pereira-Rodrigues, N., Cofre, R., Zagal, J.H., and Bedioui, F., Electrocatalytic activity of CoPc adsorbed on graphite electrode for the oxidation of glutathione (GSH) and the reduction of its disulfide (GSSG) at physiological pH, Bioelectrochemistry, 2007, vol. 70, p. 147. https://doi.org/10.1016/j.bioelechem.2006.03.025

    Article  CAS  PubMed  Google Scholar 

  15. Sehlotho, N., Nyokong, T., Zagal, J.H., and Bedioui, F., Electrocatalysis of oxidation of 2-mercaptoethanol, L‑cysteine and reduced glutathione by adsorbed and electro-deposited cobalt pyrrole-phenoxy and ethoxy-thiophene substituted phthalocyanines, Electrochim. Acta, 2006, vol. 51, p. 5125. https://doi.org/10.4067/S0717-97072012000300010

    Article  CAS  Google Scholar 

  16. Griveau, S., Gulppi, M., Pavez, J., Zagal, J.H., and Bedioui, F., Cobalt phthalocyanine-based molecular materials for the electrocatalysis and electroanalysis of 2-mercaptoethanol, 2-mercaptoethanesulfonic acid, reduced glutathione and L-cysteine, Electroanalysis, 2003, vol. 15, p. 779. https://doi.org/10.1002/elan.200390096

    Article  CAS  Google Scholar 

  17. Aguirre, M.J., Isaacs, M., Armijo, F., Bocchi, N., and Zagal, J.H., Catalytic electrooxidation of 2-mercaptoethanol on perchlorinated iron phthalocyanine adsorbed on graphite electrodes, Electroanalysis, 1998, vol. 10, p. 571. https://doi.org/10.1002/(SICI)1521-4109(199807)10:8<571::AID-ELAN571>3.0.CO;2-7

    Article  CAS  Google Scholar 

  18. Zagal, J.H. and Paez, C., Catalytic electrooxidation of 2-mercaptoethanol on a graphite electrode modified with metal phthalocyanines, Electrochim. Acta, 1989, vol. 34, p. 243.

    Article  CAS  Google Scholar 

  19. Lezna, R.O., Juanto, S., and Zagal, J.H., Spectrochemical studies on tetrasulfonated metallophthalocyanines adsorbed on the basal plane electrode in the presence of cysteine, J. Electroanal. Chem., 1998, vol. 452, p. 221. https://doi.org/10.1016/j.electacta.2013.07.230

    Article  CAS  Google Scholar 

  20. Cárdenas-Jirón, G.I. and Zagal, J.H., Donor-acceptor intermolecular hardness on charge transfer reactions of substituted cobalt phthalocyanines, J. Electroanal Chem., 2001, vol. 497, p. 55. https://doi.org/10.1016/S0022-0728(00)00434-4

    Article  Google Scholar 

  21. Zagal, J.H. and Páez, C., Catalytic electro-oxidation of 2-mercaptoethanol on a graphite electrode modified with metal phthalocyanines, Electrochim. Acta, 1989, vol. 34, p. 243. https://doi.org/10.1016/0013-4686(89)87092-6

    Article  CAS  Google Scholar 

  22. Cárdenas, G.I., Caro, C.A., Venegas-Yazigi, D., and Zagal, J.H., Theoretical study of charge transfer energy profile of cobalt phthalocyanine and 2-mercaptoethanol. Effect of the graphite on the global reactivity. J. Molec. Struct. (Theochem.), 2002, vol. 580, p. 193. https://doi.org/10.1016/S0166-1280(01)00613-3

    Article  Google Scholar 

  23. Aguirre, M.J., Isaacs, M., Armijo, F., Basáez, L., and Zagal, J.H., Effect of the substituents on the ligand of iron phthalocyanines adsorbed on a graphite electrode on their activity for the electrooxidation 2-mercaptoethanol, Electroanalysis, 2002, vol. 14, p. 356. https://doi.org/10.1002/1521-4109(200203)14:5<356::AID-ELAN356>3.0.CO;2-U

    Article  CAS  Google Scholar 

  24. Gulppi, M.A., Recio, F.J., Tasca, F., Ochoa, G., Silva, J.F., Pavez, J., and Zagal, J.H., Optimizing the reactivity of surface confined cobalt N4-macrocyclics for the electrocatalytic oxidation of L-cysteine by tuning the Co(II)/(I) formal potential of the catalyst, Electrochim. Acta, 2014, vol. 126, p. 37. https://doi.org/10.1016/j.electacta.2013.07.230

    Article  CAS  Google Scholar 

  25. Silva, N., Castro-Castillo, C., Oyarzún, M.P., Ramírez, S., Gutierrez-Ceron, C., Marco, J.F., Silva, J.F., and Zagal, J.H., Modulation of the electrocatalytic activity of Fe phthalocyanine to carbon nanotubes: electrochemistry of l-cysteine and l-cystine, Electrochim. Acta, 2019, vol. 308, p. 295.

    Article  CAS  Google Scholar 

  26. Akkurst, F. and Hamuryudan, E., Enhancement of solubility via esterification: synthesis and characterization of octakis (ester)-substituted phthalocyanines, Dyes Pigments, 2008, vol. 79, p. 153. https://doi.org/10.1016/j.dyepig.2008.02.001

    Article  CAS  Google Scholar 

  27. Bedioui, F., Griveau, S., Nyokong, T., Appleby, A.J., Caro, C.A., Gulppi, M., Ochoa, G., and Zagal, J.H., Tuning the redox properties of metalloporphyrin and metallophthalocyanine based molecular electrodes for the highest electrocatalytic activity for the oxidation of thiols, Phys. Chem. Chem. Phys., 2007, vol. 9, p. 3383. https://doi.org/10.1039/b618767f

    Article  CAS  PubMed  Google Scholar 

  28. Villagra, E., Bedioui, F., Nyokong, T., Canales, J.C., Páez, M.A., Costamagna, J., and Zagal, J.H., Tuning the redox properties of Co-N4 macrocyclic complexes for the catalytic electrooxidation of glucose, Electrochim. Acta, 2008, vol. 53, p. 4883. https://doi.org/10.1016/j.electacta.2008.02.006

    Article  CAS  Google Scholar 

  29. Linares-Flores, C., Zagal, J.H., Pavez, J., Pino-Riffo, D., and Arratia-Pérez, R., Reinterpreting the role of the catalyst formal potential. The case of thiocyanate electrooxidation catalyzed by CoN4-macrocyclic complexes, J. Phys. Chem. C, 2012, vol. 116, p. 7091. https://doi.org/10.1021/jp300764n

    Article  CAS  Google Scholar 

  30. Zagal, J.H., Cañete, P., Recio, J., Tasca, F., and Linares-Flores, C., Tuning the Fe(II)/(I) formal potential of FeN4 catalysts adsorbed on graphite electrodes to the reversible potential of the reaction for maximum activity: hydrazine oxidation, Electrochem. Comm., 2013, vol. 30, p. 34. https://doi.org/10.1016/j.elecom.2013.01.024

    Article  CAS  Google Scholar 

  31. Silva, N., Castro-Castillo, C., Oyarzún, M.P., Ramírez, S., Gutierrez-Ceron, C., Marco, F.J., Silva, J.F., and Zagal, J.H., Modulation of the electrocatalytic activity of Fe phthalocyanine to carbon nanotubes: electrochemistry of l-cysteine and l-cystine, Electrochim. Acta, 2019, vol. 308, p. 295. https://doi.org/10.1016/j.electacta.2019.04.005

    Article  CAS  Google Scholar 

  32. Silva, N., Calderón, S., Páez, M.A., Oyarzún, M.P., Koper, M.T.M., and Zagal, J.H., Probing the Fen+/Fe(n – 1)+ redox potential of Fe phthalocyanines as a reactivity descriptor in the electrochemical oxidation of cysteamine, J. Electroanal. Chem., 2018, vol. 15, p. 502. https://doi.org/10.1016/j.jelechem.2017.12.068

    Article  CAS  Google Scholar 

  33. Zagal, J.H. and Koper, M.K.T., Reactivity descriptors for the activity of MN4 molecular catalysts for the oxygen reduction reaction, Angew. Chem., 2016, vol. 55, p. 14510. https://doi.org/10.1002/anie.201604311

    Article  CAS  Google Scholar 

  34. Linares, C., Geraldo, D., Paez, M., and Zagal, J.H., Non-linear correlations between the formal potential and Hammett parameters of substituted iron phthalocyanines and catalytic activity for the electrooxidation of hydrazine, J. Sol. State Electrochem., 2003, vol. 7, p. 626.

    Article  CAS  Google Scholar 

  35. Shumba, M. and Nyokong, T., Effects of covalent versus non-covalent interactions on the electrocatalytic behavior of tetracarboxyphenoxyphthalocyanine in the presence of multi-walled carbon nanotubes, J. Coord. Chem., 2017, vol. 70, p. 1585. https://doi.org/10.1080/00958972.2017.1303679

    Article  CAS  Google Scholar 

  36. O’Donoghue, C.S.J.N., Shumba, M., and Nyokong, T., Electrode modification through click chemistry using Ni and Co alkyne phthalocyanines for electrocatalytic detection of hydrazine, Electroanalysis, 2017, vol. 29, p. 1731. https://doi.org/10.1002/elan.201700084

    Article  CAS  Google Scholar 

  37. Makinde, Z.O., Louzada, M., Mashazi, P., Nyokong, E.T., and Khene, S., Electrocatalytic behaviour of surface confined pentanethio cobalt(II) binuclear phthalocyanines towards the oxidation of 4-chlorophenol, Appl. Surf. Sci., 2017, vol. 425, p. 702. https://doi.org/10.1016/j.apsusc.2017.06.271

    Article  CAS  Google Scholar 

  38. Ureta-Zañartu, M.S., Alarcon, A., Muñoz, G., and Gutierrez, C., Electrooxidation of methanol and ethylene glicol on gold and on gold modified with an electrodeposited polyNiTSPc film, Electrochim. Acta, 2007, vol. 52, p. 7857. https://doi.org/10.1016/j.electacta.2007.06.055

    Article  CAS  Google Scholar 

  39. Kaczmarzyk, T., Jacokski, T., and Dzilinski, K., Spectroscopic characteristic of FeI-phthalocyanine, Nukleokina, 2007, vol. 52, p. S99.

    CAS  Google Scholar 

  40. Bletsa, E., Solakidou, M., Louloudi, M., and Deligianakis, Y., Oxidative catalytic evolution of redox and spin-states of a Fe-phthalocyanine studied by EPR, Chem. Phys Lett., 2016, vol. 649, p. 48.

    Article  CAS  Google Scholar 

  41. Kobayashi, N., Shirai, H., and Hojo, N., Iron(III) phthalocyanines: oxidation and spin states of iron phthalocyanines with carboxyl groups, Dalton Trans., 1984, vol. 10, p. 2107.

    Article  Google Scholar 

Download references

Funding

The authors are grateful to Fondecyt Projects 1140199, 1181037, Nucleo Milenio RC 120001 and Dicyt-Usach Postdoctoral Fellowship to C. G-C.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Gutiérrez-Cerón or J. H. Zagal.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

This paper is dedicated to the 80th anniversary of Professor V.V. Malev who has made a considerable contribution into modern directions of electrochemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Cerón, C., Silva, N., Ponce, I. et al. Testing Reactivity Descriptors for the Electrocatalytic Activity of OPG Hybrid Electrodes Modified with Iron Macrocyclic Complexes and MWCNTs for the Oxidation of Reduced Glutathione in Basic Medium. Russ J Electrochem 55, 1136–1143 (2019). https://doi.org/10.1134/S1023193519110077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519110077

Keywords:

Navigation