Skip to main content
Log in

Angular Dependence of Raman Spectra for Electroactive Polymer Films on a Platinum Electrode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The redox transformations in a conducting polymer film on a platinum electrode were studied by Raman spectroelectrochemistry at fixed potentials depending on the incidence angle of the laser beam. Raman scattering was excited with a laser at a wavelength of 532 nm. Polyaniline (PANI) and its complex with poly-2-acrylamido-2-methyl-1-propanesulfonic acid (PAMPSA) were used as a conducting polymer. The polymer films were deposited by potentiostatic electropolymerization. By varying the incidence angle of the beam it is possible to obtain a Raman spectrum without the bands of the substrate overlapping with the characteristic bands of the polymer to minimize the substrate effect on the interpretation of the results. A comparative study of the electrochemical oxidation/reduction of the PANI films taking into account the detected angular dependence showed that, unlike the PANI films obtained in the presence of hydrochloric acid, the films of the PANI-PAMPSA complex retained the radical cation state of PANI in the range of the cathodic potentials. The reason for this is the presence of a nonconductive polymer acid phase in the PANI-PAMPSA film, as a result of which the percolation threshold of the conducting domains of PANI appears at less cathodic potentials, hindering further extraction of the positive charge during the film reduction. In addition, the use of this approach can significantly improve the accuracy of determination of the threshold potential of the leucoemeraldine-emeraldine transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Inzelt, G., Conducting Polymers, Heidelberg: Springer, 2012, pp. 149–171.

    Book  Google Scholar 

  2. Nekrasov, A.A., Gribkova, O.L., Ivanov, V.F., and Vannikov, A.V., Electroactive films of interpolymer complexes of polyaniline with polyamidosulfonic acids: advantageous features in some possible applications, J. Solid State Electrochem., 2010, vol. 14, no. 11, p. 1975.

    Article  CAS  Google Scholar 

  3. Das, T.K. and Prusty, S., Review on conducting polymers and their applications, Polym.-Plast. Technol. Eng., 2012, vol. 51, no. 14, p. 1487.

    Article  CAS  Google Scholar 

  4. Sonmez, G., Polymeric electrochromics, Chem. Commun., 2005, no. 42, p. 5251.

  5. Nunes, M., Araújo, M., Fonseca, J., Moura, C., Hill-man, R., and Freire, C., High-performance electrochromic devices based on poly[Ni(salen)]-type polymer films, ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 22, p. 14231.

    Article  CAS  Google Scholar 

  6. Wolfart, F., Hryniewicz, B.M., Góes, M.S., Corrêa, C.M., Torresi, R., Minadeo, M.A.O.S., Córdoba de Torresi, S.I., Oliveira, R.D., Marchesi, L.F., and Vidotti, M., Conducting polymers revisited: applications in energy, electrochromism and molecular recognition, J. Solid State Electrochem., 2017, vol. 21, no. 9, p. 2489.

    Article  CAS  Google Scholar 

  7. Neo, W.T., Ye, Q., Chua, S.-J., and Xu, J., Conjugated polymer-based electrochromics: materials, device fabrication and application prospects, J. Mater. Chem. C, 2016, vol. 4, no. 31, p. 7364.

    Article  CAS  Google Scholar 

  8. Yang, Y., Polymer electroluminescent devices, MRS Bull., 1997, vol. 22, no. 6, p. 31.

    Article  CAS  Google Scholar 

  9. Ahn, S., Jeong, S.-H., Han, T.-H., and Lee, T.-W., Conducting polymers as anode buffer materials in organic and perovskite optoelectronics, Adv. Opt. Mater., 2017, vol. 5, no. 3, p. 1600512.

    Article  Google Scholar 

  10. Babkova, T.A., Kondratiev, V.V., and Shevaldysheva, D.I., Oxidation of hydrazine on poly-3,4-ethylenedioxythiophene polymer films with inclusions of palladium nanoparticles, Russ. J. Electrochem., 2013, vol. 49, no. 3, p. 259.

    Article  CAS  Google Scholar 

  11. Vereshchagin, A.A., Sizov, V.V., Verjuzhskij, M.S., Hrom, S.I., Volkov, A.I., Danilova, J.S., Novozhilova, M.V., Laaksonen, A., and Levin, O.V., Interaction of amines with electrodes modified by polymeric complexes of Ni with salen-type ligands, Electrochim. Acta, 2016, vol. 211, no. 3, p. 726–734.

    Article  CAS  Google Scholar 

  12. Tsakova, V. and Seeber, R., Conducting polymers in electrochemical sensing: factors influencing the electroanalytical signal, Anal. Bioanal. Chem., 2016, vol. 408, no. 26, p. 7231.

    Article  CAS  Google Scholar 

  13. Isakova, A.A., Indenbom, A.V., Yakobson, O.D., Gribkova, O.L., Brevnov, V.V., Garina, E.O., and Vannikov, A.V., The influence of the surface structure of polyaniline films on the adsorption of influenza A viruses and antibodies to them, Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 4, p. 677.

    Article  CAS  Google Scholar 

  14. Mažeikienė, R., Niaura, G., and Malinauskas, A., A comparative Raman spectroelectrochemical study of selected polyaniline derivatives in a pH-neutral solution, Synth. Met., 2010, vol. 160, nos. 9–10, p. 1060.

    Article  Google Scholar 

  15. Lapkowski, M., Berrada, K., Quillard, S., Louarn, G., Lefrant, S., and Pron, A., Electrochemical oxidation of polyaniline in nonaqueous electrolytes:’ in situ’ Raman spectroscopic studies, Macromolecules, 1995, vol. 28, no. 4, p. 1233.

    Article  CAS  Google Scholar 

  16. Liu, C., Zhang, J., Shi, G., and Chen, F., Doping level change of polyaniline film during its electrochemical growth process, J. Appl. Polym. Sci., 2004, vol. 92, no. 1, p. 171.

    Article  CAS  Google Scholar 

  17. Shah, A.-H.A. and Holze, R., Spectroelectrochemistry of two-layered composites of polyaniline and poly(o-aminophenol), Electrochim. Acta, 2008, vol. 53, no. 14, p. 4642.

    Article  CAS  Google Scholar 

  18. Wang, X., Bernard, M.C., Deslouis, C., Joiret, S., and Rousseau, P., Kinetic reactions in thin polyaniline films revisited through Raman-impedance dynamic coupling, Electrochim. Acta, 2011, vol. 56, no. 10, p. 3485.

    Article  CAS  Google Scholar 

  19. Ćirić-Marjanović, G., Trchová, M., Matějka, P., Holler, P., Marjanović, B., and Juranić, I., Electrochemical oxidative polymerization of sodium 4-amino-3-hydroxynaphthalene-1-sulfonate and structural characterization of polymeric products, React. Funct. Polym., 2006, vol. 66, no. 12, p. 1670.

    Article  Google Scholar 

  20. Nekrasov, A.A., Ivanov, V.F., Gribkova, O.L., and Vannikov, A.V., On the role played by dimers of radical cations in the process of electrochemical oxidation-reduction of polyaniline: the data that were obtained using the method of cyclic voltabsorptometry in the presence of counteranions of a diverse nature, Russ. J. Electrochem., 2004, vol. 40, no. 3, p. 249.

    Article  CAS  Google Scholar 

  21. Abrantes, L.M., Correia, J.P., Savic, M., and Jin, G., Structural modifications during conducting polymer formation—an ellipsometric study, Electrochim. Acta, 2001, vol. 46, nos. 20–21, p. 3181.

    Article  CAS  Google Scholar 

  22. Barbero, C., Nanoscale dimensional changes and optical properties of polyaniline measured by in situ spectroscopic ellipsometry, J. Electrochem. Soc., 1994, vol. 141, no. 4, p. 859.

    Article  CAS  Google Scholar 

  23. Ivanov, V.F., Gribkova, O.L., Novikov, S.V., Nekrasov, A.A., Isakova, A.A., Vannikov, A.V., Meshkov, G.B., and Yaminsky, I.V., Redox heterogeneity in polyaniline films: from molecular to macroscopic scale, Synth. Met., 2005, vol. 152, nos. 1–3, p. 153.

    Article  CAS  Google Scholar 

  24. O’Neil, K.D., Shaw, B., and Semenikhin, O.A., On the origin of mesoscopic inhomogeneity of conducting polymers, J. Phys. Chem. B, 2007, vol. 111, no. 31, p. 9253.

    Article  Google Scholar 

  25. Joo, J., Oh, E.J., Min, G., MacDiarmid, A.G., and Epstein, A.J., Evolution of the conducting state of polyaniline from localized to mesoscopic metallic to intrinsic metallic regimes, Synth. Met., 1995, vol. 69, nos. 1–3, p. 251.

    Article  CAS  Google Scholar 

  26. Nekrasov, A.A., Gribkova, O.L., Iakobson, O.D., Ardabievskii, I.N., Ivanov, V.F., and Vannikov, A.V., Raman spectroelectrochemical study of electrodeposited polyaniline doped with polymeric sulfonic acids of different structures, Chem. Pap, 2017, vol. 71, no. 2, p. 449.

    Article  CAS  Google Scholar 

  27. Ćirić-Marjanović, G., Trchová, M., and Stejskal, J., The chemical oxidative polymerization of aniline in water: Raman spectroscopy, J. Raman Spectrosc., 2008, vol. 39, p. 1375. https://doi.org/10.1002/jrs.2007

    Article  Google Scholar 

  28. Trchová, M., Morávková, Z., Bláha, M., and Stejskal, J., Raman spectroscopy of polyaniline and oligoaniline thin films, Electrochim. Acta, 2014, vol. 122, p. 28.

    Article  Google Scholar 

  29. Bernard, M.C. and Hugot-Le Goff, A., Quantitative characterization of polyaniline films using Raman spectroscopy, Electrochim. Acta, 2006, vol. 52, p. 595.

    Article  CAS  Google Scholar 

  30. Huang, Y.-F., Kooyman, P.J., and Koper, M.T.M., Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy, Nat. Commun., 2016, vol. 7, p. 12440.

    Article  CAS  Google Scholar 

  31. Huang, W.-S., Humphrey, B.D., and MacDiarmid, A.G., Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes, J. Chem. Soc., Faraday Trans. 1, 1986, vol. 82, no. 8, p. 2385.

    Article  CAS  Google Scholar 

  32. Alpatova, N.M., Semenikhin, O.A., Ovsyannikova, E.V., Erenburg, M.R., Efimov, O.N., Belov, M.Y., and Kazarinov, V.E., Two types of retarded charge in the electron-conducting thiophene polymers, Russ. J. Electrochem., 2000, vol. 36, no. 9, p. 919.

    Article  CAS  Google Scholar 

  33. Semenikhin, O.A., Ovsyannikova, E.V., Ehrenburg, M.R., Alpatova, N.M., and Kazarinov, V.E., Electrochemical and photoelectrochemical behaviour of polythiophenes in non-aqueous solutions, J. Electroanal. Chem., 2000, vol. 494, no. 1, p. 1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nekrasov.

Additional information

Russian Text © A.A. Nekrasov, O.D. Yakobson, O.L. Gribkova, V.F. Ivanov, V. Tsakova, 2019, published in Elektrokhimiya, 2019, Vol. 55, No. 3, pp. 308–317.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nekrasov, A.A., Yakobson, O.D., Gribkova, O.L. et al. Angular Dependence of Raman Spectra for Electroactive Polymer Films on a Platinum Electrode. Russ J Electrochem 55, 175–183 (2019). https://doi.org/10.1134/S1023193519020058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519020058

Keywords

Navigation