Skip to main content
Log in

The Effect of Chromium Oxide on the Conductivity of Ce0.9Gd0.1O2, a Solid-Oxide Fuel Cell Electrolyte

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

To study the effect of chromium oxide on the electric properties of Ce0.9Gd0.1O2, a solid-oxide fuel cell electrolyte, two approaches were used: (a) the studying of electrochemical properties of the Ce0.9Gd0.1O2- electrolyte after the spontaneous adsorption of chromium-containing molecules from a gas phase and (b) the analyzing of transport properties of the Ce0.9Gd0.1O2-based chromium-containing compositions obtained by the mixing of solid-oxide electrolyte with chromium(III) oxide. It was found that the chromium reduction at the electrolyte surface dominates when chromium is adsorbed from gas phase. Both approaches allow concluding that the chromium presence in Ce0.9Gd0.1O2 deteriorates the electrolyte transport properties at temperatures above 735°С. This is caused by the chromium incorporation into the electrolyte’s fluorite structure, as well as surface microheterogeneity induced by the chromium presence at the Ce0.9Gd0.1O2 surface and the cerium and gadolinium cation redistribution between the grains’ bulk and surface. At intermediate temperatures (below 735°С) the electric conductivity of the Ce0.9Gd0.1O2-based chromium-containing composition exceeds that of the initial solid-oxide electrolyte, which can be due to changes in transport properties of the chromium-containing phases formed at the Ce0.9Gd0.1O2 surface and grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bredikhin, S.I., Golodnitskii, A.E., Drozhzhin, O.A., Istomin, C.Ya., Kovalevskii, V.P., and Filippov, S.P., Statsionarnye energeticheskie ustanovki s toplivnymi elementami: materially, tekhnologii, rynki (Fuel Cell-based Stationary Power Plants: Materials, Technologies, Markets), Moscow: NTF “Energoprogress,” the “EEEK” Corp., 2017.

    Google Scholar 

  2. Quadakkers, W.J., Piron-Abellan, J., Shemet, V., and Singheiser, L., Metallic interconnectors for solid oxide fuel cells—a review, Mater. High Temperatures, 2003, vol. 20, no. 2, p. 115.

    CAS  Google Scholar 

  3. Hilpert, K., Quadakkers, W.J., and Singheiser, L., Interconnects, in Handbook of Fuel Cells †Fundamentals, Technology and Applications, Vielstich, W., Gasteiger, H.A., and Lamm, A., Eds, New York: Wiley, 2003, vol. 3, p. 1037.

    Google Scholar 

  4. Hilpert, K., Das, D., Miller, M., Peck, D.H., and Weiss, R., Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes, J. Electrochem. Soc., 1996, vol. 143, no. 11, p. 3642.

    Article  CAS  Google Scholar 

  5. Jiang, S.P., Zhang, J.P., Apateanu, L., and Foger, K., Deposition of chromium species at Sr-doped LaMnO3 electrodes in solid oxide fuel cells. II. Effect on O2 reduction reaction, J. Electrochem. Soc., 2000, vol. 147, no. 9, p. 3195.

    Article  CAS  Google Scholar 

  6. Konysheva, E., Penkalla, H., Wessel, E., Mertens, J., Seeling, U., Singheiser, L., and Hilpert, K., Chromium poisoning of perovskite cathodes by the ODS alloy Cr5Fe1Y2O3 and the high chromium ferritic steel Crofer22APU, J. Electrochem. Soc., 2006, vol. 153, no. 4, p. A765.

    Article  CAS  Google Scholar 

  7. Krumpelt, M., Cruse, T.A., Ingram, B.J., Routbort, J.L., Wang, S.L., Salvador, P.A., and Chen, G., The effect of chromium oxyhydroxide on solid oxide fuel cells, J. Electrochem. Soc., 2010, vol. 157, no. 2, p. B228.

    Article  CAS  Google Scholar 

  8. Konysheva, E., Mertens, J., Penkalla, H., Singheiser, L., and Hilpert, K., Chromium poisoning of the porous composite cathode. Effect of cathode thickness and current density, J. Electrochem. Soc., 2007, vol. 154, no. 12, p. B1252.

    Article  CAS  Google Scholar 

  9. Stodolny, M.K., Boukamp, B.A., Blank, D.H.A., and van Berkel, F.P.F., La(Ni,Fe)O3 stability in the presence of chromia—a solid-state reactivity study, J. Electrochem. Soc., 2011, vol. 158, no. 2, p. B112.

    Article  CAS  Google Scholar 

  10. Stodolny, M.K., Boukamp, B.A., Blank, D.H.A., and van Berkel, F.P.F., Impact of Cr-poisoning on the conductivity of LaNi0.6Fe0.4O3, J. Power Sources, 2011, vol. 196, p. 9290.

    Article  CAS  Google Scholar 

  11. Huang, B., Zhu, X.J., Ren, R.X., Hu, Y.X., Ding, X.Y., Liu, Y.B., and Liu, Z.Y., Chromium poisoning and degradation at Gd0.2Ce0.8O2-impregnated LaNi0.6Fe0.4O3-δ cathode for solid oxide fuel cell, J. Power Sources, 2012, vol. 216, p. 89.

    Article  CAS  Google Scholar 

  12. Yuan, M., Wang, X., Huang, B., Li, Y., Zhang, Z., Liu, Z., Tang, X., and Zhu, X., Performance of chromium-poisoning resistance of Gd0.2Ce0.8O2-impregnated LaNi0.6Fe0.4O3 †δ cathode materials, Acta Materiae Compositae Sinica, 2014, vol. 31, no. 6, p. 1635.

    CAS  Google Scholar 

  13. Jiang, S.P., A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes, Solid State Ionics, 2002, vol. 146, nos. 1–2, p. 1.

    Article  CAS  Google Scholar 

  14. Tucker, M.C., Kurokawa, H., Jacobson, C.P., De Jonghe, L.C., and Visco S.J., A fundamental study of chromium deposition on solid oxide fuel cell cathode materials, J. Power Sources, 2006, vol. 160, no. 1, p. 130.

    CAS  Google Scholar 

  15. Arregui, A., Rodriguez-Martinez, L.M., Modena, S., Bertoldi, M., and Sglavo, V.M., Ferritic cathodes degradation by potassium/chromium poisoning and air humidification, Fuel Cells, 2013, vol. 13, no. 5, p. 720.

    CAS  Google Scholar 

  16. Menzler, N.H., Sebold, D., and Wessel, E., Interaction of La0.58Sr0.40Co0.20Fe0.80O3 †δ cathode with volatile Cr in a stack test—Scanning electron microscopy and transmission electron microscopy investigations, J. Power Sources, 2014, vol. 254, p. 148.

    Article  CAS  Google Scholar 

  17. Konysheva, E. Yu., Effect of current density on poisoning rate of Co-containing fuel cell cathodes by chromium, Russ. J. Electrochem., 2014, vol. 50, no. 7, p. 630.

    Article  CAS  Google Scholar 

  18. Zhao, L., Zhang, J., Becker, T., and Jiang, S.P., Raman spectroscopy study of chromium deposition on La0.6Sr0.4Co0.2Fe0.8O3 †δ cathode of solid oxide fuel cells, J. Electrochem. Soc., 2014, vol. 161, no. 6, p. F687.

    Article  CAS  Google Scholar 

  19. Matsuzaki, Y. and Yasuda, I., Dependence of SOFC cathode degradation by chromium-containing alloy on compositions of electrodes and electrolytes, J. Electrochem. Soc., 2001, vol. 148, no. 2, p. A126.

    Article  CAS  Google Scholar 

  20. Perfil’ev, M.V., Demin, A.K., Kuzin, B.L., and Lipilin, A.S., Vysokotemperaturnyi elektroliz gazov (High-Temperature Electrolysis of Gases), Moscow: Nauka, 1988.

    Google Scholar 

  21. De Guire, M.R., Shingler, M.J., and Dincer, E., Point defect analysis and microstructural effects in pure and donor-doped ceria, Solid State Ionics, 1992, vol. 52, nos. 1–3, p. 155.

    Google Scholar 

  22. Eguchi, K., Setoguchi, T., Inoue, T., and Arai, H., Electrical properties of ceria-based oxides and their application to solid oxide fuel cells, Solid State Ionics, 1992, vol. 52, no. 1, p. 165.

    Article  CAS  Google Scholar 

  23. Pound, B.G., The characterization of doped CeO2 electrodes in solid oxide fuel cells, Solid State Ionics, 1992, vol. 52, nos. 1–3, p. 183.

    Article  CAS  Google Scholar 

  24. Morris, B.C., Flavell, W.R., Mackrodt, W.C., and Morris, M.A., Lattice parameter changes in the mixedoxide system Ce1 †xLaxO2 †δ: a combined experimental and theoretical study, J. Mater. Chem., 1993, vol. 3, no. 10, p. 1007.

    Article  CAS  Google Scholar 

  25. Mogensen, M., Lindegaard, T., Hansen, U.R., and Mogensen, G., Physical properties of mixed conductor solid oxide fuel cell anodes of doped CeO2, J. Electrochem. Soc., 1994, vol. 141, no. 8, p. 2122.

    Article  CAS  Google Scholar 

  26. Dikmen, S., Shuk, P., and Greenblatt, M., Hydrothermal synthesis and properties of Ce1 †xLaxO2 †δ solid solutions, Solid State Ionics, 1999, vol. 126, no. 1, p. 89.

    Article  CAS  Google Scholar 

  27. Jud, E. and Gauckler, L.J., The effect of cobalt oxide addition on the conductivity of Ce0.9Gd0.1O1.95, J. Electroceram., 2005, vol. 15, no. 2, p. 159.

    Article  CAS  Google Scholar 

  28. Konysheva, E. and Irvine, J.T.S., Transport properties of multi-cations doped cerium oxide, Solid State Ionics, 2011, vol. 184, no. 1, p. 27.

    Article  CAS  Google Scholar 

  29. Steele, B.C.H. and Heinzel, A., Materials for fuel–cell technologies, Nature, 2001, vol. 414, p. 345.

    Article  CAS  Google Scholar 

  30. Fergus, J.W., Electrolytes for solid oxide fuel–cells, J. Power Sources, 2006, vol. 162, no. 1, p. 30.

    Article  CAS  Google Scholar 

  31. Jacobson, A.J., Materials for solid oxide fuel–cells, Chem. Mater., 2010, vol. 22, no. 3, p. 660.

    Article  CAS  Google Scholar 

  32. Dalslet, B., Blennow, P., Hendriksen, P.V., Bonanos, N., Lybye, D., and Mogensen M., Assessment of doped ceria as electrolyte, J. Solid State Electrochem., 2006, vol. 10, no. 8, p. 547.

    Article  CAS  Google Scholar 

  33. Pikalova, E.Yu., Bogdanovich, N.M., Kolchugin, A.A., Osinkin, D.A., and Bronin, D.I., Electrical and electrochemical properties of La2NiO4 + δ-based cathodes in contact with Ce0.8Sm0.2O2 †δ electrolyte, Procedia Eng., 2014, vol. 98, p. 105.

    Article  CAS  Google Scholar 

  34. Hou, Y., Wu, J., and Konysheva, E.Yu., Quantitative characterization of Cr–adsorption on CeO2, pure and doped BaCeO3 and its impact on the electrochemical performance of Ce containing complex oxides, Int. J. Hydrogen Energy, 2016, vol. 41, no. 6, p. 3994.

    Article  CAS  Google Scholar 

  35. Zhao, L., Cui, Y., Gui, L., Li., G., and He, B., A comparison study of chromium deposition and poisoning on La0.8Sr0.2Ga0.8Mg0.2O3 − δ and Gd0.1Ce0.9O2 − δ electrolytes of solid oxide fuel cells, J. Alloys Compd., 2016, vol. 688, p. 376.

    Article  CAS  Google Scholar 

  36. Ishibashi, D., Taniguchi, S., Inoue, Y., Chou J.T., and Sasaki, K., Deposition, agglomeration and vaporization of chromium oxide by cathode polarization change in SOFC cathodes, J. Electrochem. Soc., 2016, vol. 163, no. 7, p. F596.

    Article  CAS  Google Scholar 

  37. Ebbinghaus, B.B., Thermodynamics of gas phase chromium species: the chromium oxides, the chromium oxyhydroxides, and volatility calculations in waste incineration processes, Combust. Flame, 1993, vol. 93, nos. 1–2, p. 119.

    Article  CAS  Google Scholar 

  38. Jacobson, N., Myers, D., Opila, E., and Coplan, E., Interactions of water vapor with oxides at elevated temperatures, J. Phys. Chem. Solids, 2005, vol. 66, nos. 2–4, p. 471.

    Article  CAS  Google Scholar 

  39. MacDonald, J. R., Zplot for Windows, Version 2.2, fitting program, LEVM 6.0.

  40. Fleig, J., The grain boundary impedance of random microstructures: numerical simulations and implications for the analysis of experimental data, Solid State Ionics, 2002, vol. 150, nos. 1–2, p. 181.

    Article  CAS  Google Scholar 

  41. NIST XPS database, http://srdata.nist.gov/xps/index.htm

  42. Konysheva, E.Yu. and Francis, S.M., Identification of surface composition and chemical states in composites comprised of phases with fluorite and perovskite structures by X-ray photoelectron spectroscopy, Appl. Surf. Sci., 2013, vol. 268, p. 278.

    Article  CAS  Google Scholar 

  43. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides, Acta Crystallogr. A, 1976, vol. 32, p. 751.

    Article  Google Scholar 

  44. Holt, A. and Kofstad, P., Electrical conductivity and defect structure of Cr2O3. II. Reduced temperatures (<1000°C), Solid State Ionics, 1994, vol. 69, no. 2, p. 137.

    Article  CAS  Google Scholar 

  45. Zhu, W.Z. and Deevi, S.C., Development of interconnect materials for solid oxide fuel cells, Mater. Sci. Eng. A, 2003, vol. 348, p. 227.

    Article  CAS  Google Scholar 

  46. Liu, H., Stack, M.M., and Lyon, S.B., Reactive element effects on the ionic transport processes in Cr2O3 scales, Solid State Ionics, 1998, vol. 109, nos. 3–4, p. 247.

    Article  CAS  Google Scholar 

  47. Gray, C., Lei, Y., and Wang, G., Charged vacancy diffusion in chromium oxide crystal: DFT and DFT+U predictions, J. Appl. Phys., 2016, vol. 120, no. 21, article no. 215101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Konysheva.

Additional information

Original Russian Text © E.Yu. Konysheva, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 6, pp. 544–553.

Presented at the IV All-Russian Conference “Fuel Cells and Fuel Cell based Power Plants” (with international participation) June 25‒29, 2017, Suzdal, Vladimir region.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konysheva, E.Y. The Effect of Chromium Oxide on the Conductivity of Ce0.9Gd0.1O2, a Solid-Oxide Fuel Cell Electrolyte. Russ J Electrochem 54, 471–480 (2018). https://doi.org/10.1134/S1023193518060095

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518060095

Keywords

Navigation