Skip to main content
Log in

Water Hardness Electrodes with Ionophores Containing Oxy- and Ester-Groups

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Lipophilic compounds combining oxy- and ester-groups are synthesized and studied as neutral ionophores in plasticized PVC membranes for the development of novel water hardness ion-selective electrodes. Electrodes based on the ionophores studied showed a higher selectivity to calcium over magnesium ions. However, for electrodes based on hexadecyl-4-hydroxybutanoate or decyloxybutanol this preference turned to be rather low: logKCaMg=–(0.5–0.7). Electrodes with membranes containing hexadecyl-4- hydroxybutanoate, 0.3 M as a neutral ionophore and bis[4-(1,1,3,3-tetramethylbutyl)phenyl]phosphate, 0.01 M as a charged ionophore, in combination with Ca2+-selective electrode based on ETH 1001 as ionophore, proved to be suitable for measurements of water hardness, also for the measurement of Mg2+ ion content in artificial aquarium fish-breeding water samples and in samples modeling electrolyte composition of blood serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boulahlib-Bendaoud, Y., Ghizellaoui, S., and Tlili, M., Inhibition of CaCO3 scale formation in ground waters using mineral phosphates, Desalinat. Water Treatment, 2012, vol. 38, pp. 271–277.

    Article  Google Scholar 

  2. Salman, M.A., Al-Nuwaibit, G., Safar, M., and Al-Mesri, A., Performance of physical treatment method and different commercial antiscalants to control scaling deposition in desalination plant, Desalinat., 2015, vol. 369, pp. 18–25.

    Article  CAS  Google Scholar 

  3. Akgul, A., Effect of water hardness on the offset printing quality, Asian J. Chem., 2012, vol. 24, pp. 4771–4773.

    CAS  Google Scholar 

  4. Rosanoff, A., The high heart health value of drinkingwater magnesium, Med. Hypotheses, 2013, vol. 81, pp. 1063–1065.

    Article  CAS  Google Scholar 

  5. Charles, A.L., Markich, S.J., Stauber, J.L., and De Filippis, L.F., The effect of water hardness on the toxicity of uranium to a tropical freshwater alga (Chlorella sp.), Aquat. Toxicol., 2002, vol. 60, pp. 61–73.

    Article  CAS  Google Scholar 

  6. Källqvist, T., Effect of water hardness on the toxicity of cadmium to the green algae Pseudokirchneriella subcapitata in an artificial growth medium and nutrient-spiked natural Lake Waters, J. Toxicol. Environ. Health A, 2009, vol. 72, pp. 277–283.

    Article  Google Scholar 

  7. Terzi, E. and Verep, B., Effects of water hardness and temperature on the acute toxicity of mercuric chloride on rainbow trout (Oncorhynchus mykiss), Toxicol. Ind. Health, 2011, vol. 28, pp. 499–504.

    Article  Google Scholar 

  8. Harford, A.J., Mooney, T.J., Trenfield, M.A., and van Dam, R.A., Manganese toxicity to tropical freshwater species in low hardness water, Environ. Toxicol. Chem., 2015, vol. 34, pp. 2856–2863.

    Article  CAS  Google Scholar 

  9. Soucek, D.J., Tyler, Y., Linton, K., Christopher, Z., Tarr, D., Dickinson, A., Wickramanayake, N., Delos, C.G., and Cruz, L.A., Influence of water hardness and sulfate on the acute toxicity of chloride to sensitive freshwater invertebrates, Environ. Toxicol. Chem., 2011, vol. 30, pp. 930–938.

    Article  CAS  Google Scholar 

  10. Elphick, J.R., Davies, M., Gilron, G., Canaria, E.C., Lo, B., and Bailey, H.C., An aquatic toxicological evaluation of sulfate: The case for considering hardness as a modifying factor in setting water quality guidelines, Environ. Toxicol. Chem., 2011, vol. 30, pp. 247–252.

    Article  CAS  Google Scholar 

  11. Straus, D.L. Farmer, B.D., Beck, B.H., Bosworth, B.G., Torrans, E.L., and Tucke, C.S., Water hardness influences Flavobacterium columnare pathogenesis in channel catfish, Aquaculture, 2015, vol. 435, pp. 252–256.

    Article  CAS  Google Scholar 

  12. Gogoi, B., Kachari, A., and Das, D.N., Assessment of water quality in relation to fishery perspective in flood plain wetlands of Subansiri River Basin Assam, India, J. Fish. Aquat. Sci., 2015, vol. 10, pp. 171–180.

    Article  Google Scholar 

  13. Lergaa, T.M. and O’Sullivan, C.K., Rapid determination of total hardness in water using fluorescent molecular aptamer beacon, Anal. Chim. Acta, 2008, vol. 610, pp. 105–111.

    Article  Google Scholar 

  14. Verissimo, M.I.S., Oliveira, J.A.B.P., and Gomes, M.T.S.R., Determination of the total hardness in tap water using acoustic wave sensors, Sens. Actuat. B, 2007, vol. 127, pp. 102–106.

    Article  CAS  Google Scholar 

  15. Capitan-Vallvey, L.F., Fernandez-Ramos, M.D., de Cienfuegos Galvez, P.A., and Santoyo-Gonzalez, F., Characterisation of a transparent optical test strip for quantification of water hardness, Anal. Chim. Acta, 2003, vol. 481, pp. 139–148.

    Article  CAS  Google Scholar 

  16. Ross, J.W., Calcium-selective electrode with liquid ion exchanger, Science, 1967, vol. 156, pp. 1378–1379.

    Article  CAS  Google Scholar 

  17. Bühlmann, P., Pretsch, E., and Bakker, E., Carrierbased ion-selective electrodes and bulk optodes, 2. Ionophores for potentiometric and optical sensors, Chem. Rev., 1998, vol. 98, pp. 1593–1687.

    Article  Google Scholar 

  18. Numata, M., Baba, K., Hemmi, A., Hachiya, H., Ito, S., Masadome, T., Asano, Y., Ohkubo, S., Gomi, T., Imato, T., and Hobo, T., Determination of hardness in tapwater and upland soil extracts using a long-term stable divalent cation selective electrode based on a lipophilic acrylate resin as a membrane matrix, Talanta, 2001, vol. 55, pp. 449–457.

    Article  CAS  Google Scholar 

  19. Mikhelson, K.N., Ion-selective electrodes, in Lecture Notes in Chemistry, Vol. 81, Heidelberg-New York-Dordrecht-London: Springer, 2013, p. 162.

    Google Scholar 

  20. Grekovich, A.L., Didina, S.E., and Butrimova, N.A., Development and study of a film electrode for the measurement of the sum of calcium and magnesium cations concentrations, Ion Exchange Ionometry, 2000, vol. 10, pp. 237–249.

    Google Scholar 

  21. Sokalski, T., Ceresa, A., Zwickl, T., and Pretsch, E., Large improvement of the lower detection limit of ionselective polymer membrane electrodes, J. Am. Chem. Soc., 1997, vol. 119, pp. 11347–11348.

    Article  CAS  Google Scholar 

  22. Peshkova, M.A., Sokalski, T., Mikhelson, K.N., and Lewenstam, A., Obtaining Nernstian response of Ca2+-selective electrode in a broad concentration range by tuned galvanostatic polarization, Anal. Chem., 2008, vol. 80, pp. 9181–9187.

    Article  CAS  Google Scholar 

  23. Saris, N.-E.L., Mervaala, E., Karppanen, H., Khawaja, J.A., and Lewenstam, A., Magnesium. An update on physiological, clinical and analytical aspects, Clin. Chim. Acta, 2000, vol. 294, pp. 1–26.

    Article  CAS  Google Scholar 

  24. Suzuki, K., Watanabe, K., Matsumoto, Yu., Kobayashi, M., Sato, S., Siswanta, D., and Hisamoto, H., Design and synthesis of calcium and magnesium ionophores based on double-armed diazacrown ether compounds and their application to an ion-sensing component for an ion-selective electrode, Anal. Chem., 1995, vol. 67, pp. 324–334.

    Article  CAS  Google Scholar 

  25. Zhang, W., Fakler, A., Demuth, C., and Spichiger, U.E., Comparison of different methods for determining the selectivity coefficient using a magnesium-selective electrode, Anal. Chim. Acta, 1998, vol. 375, pp. 211–222.

    Article  CAS  Google Scholar 

  26. Maj-Zurawska, M. and Lewenstam, A., Selectivity coefficients of ion-selective magnesium electrodes used for simultaneous determination of magnesium and calcium ions, Talanta, 2011, vol. 87, pp. 295–301.

    Article  CAS  Google Scholar 

  27. Saurina, J., Lopez-Aviles, E., Le Moal, A., and Hernandez-Cassou, S., Determination of calcium and total hardness in natural waters using a potentiometric sensor array, Anal. Chim. Acta, 2002, vol. 464, pp. 89–98.

    Article  CAS  Google Scholar 

  28. Morf, W.E., The Principles of Ion-Selective Electrodes and of Membrane Transport, Budapest: Akademiai Kiado, 1981, p. 433.

    Google Scholar 

  29. Peshkova, M.A., Koltashova, E.S., Khripoun, G.A., and Mikhelson, K.N., Improvement of the upper limit of the ISE Nernstian response by tuned galvanostatic polarization, Electrochim. Acta, 2015, vol. 167, pp. 187–193.

    Article  CAS  Google Scholar 

  30. Ivanova, A.D., Koltashova, E.S., Solovyeva, E.V., Peshkova, M.A., and Mikhelson, K.N., Impact of the electrolyte co-extraction to the response of the ionophorebased ion-selective electrodes, Electrochim. Acta, 2016, vol. 213, pp. 439–446.

    Article  CAS  Google Scholar 

  31. Bakker, E., Bühlmann, P., and Pretsch, E., Carrierbased ion-selective electrodes and bulk optodes, 1. General characteristics, Chem. Rev., 1997, vol. 97, pp. 3083–3132.

    Article  CAS  Google Scholar 

  32. Mikhelson, K.N., Bobacka, J., Lewenstam, A., and Ivaska, A., Potentiometric performance and interfacial kinetics of neutral ionophore based ISE membranes in interfering ion solutions before and after contact with primary ions, Electroanalysis, 2001, vol. 13, pp. 876–881.

    Article  CAS  Google Scholar 

  33. Mikhelson, K.N., Bobacka, J., Ivaska, A., Lewenstam, A., and Bochenska, M., Selectivity of lithium electrodes: Correlation with ion-ionophore complex stability constants and with interfacial exchange current densities, Anal. Chem., 2002, vol. 74, pp. 518–527.

    Article  CAS  Google Scholar 

  34. Pejcic, B. and De Marco, R., Impedance spectroscopy: Over 35 years of electrochemical sensor optimization, Electrochim. Acta, 2006, vol. 51, pp. 6217–6229.

    Article  CAS  Google Scholar 

  35. Mikhelson, K.N., AC-impedance studies of ion transfer across ionophore-based ion-selective membranes, Chem. Anal. (Warsaw, Pol.), 2006, vol. 51, pp. 853–867.

    CAS  Google Scholar 

  36. Alvarez-Mieles, G., Irvine, K., Griensven, A.V., Arias-Hidalgo, M., Torres, A., and Mynett, A.E., Relationships between aquatic biotic communities and water quality in a tropical river–wetland system, Environ. Sci. Policy, 2013, vol. 34, pp. 115–127.

    Article  CAS  Google Scholar 

  37. Lewenstam, A., Routines and challenges in clinical application of electrochemical ion-sensors, Electroanalysis, 2014, vol. 26, pp. 1171–1181.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin N. Mikhelson.

Additional information

Published in Russian in Elektrokhimiya, 2018, Vol. 54, No. 4, pp. 448–457.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin, M.B., Khripoun, G.A., Korneev, S.M. et al. Water Hardness Electrodes with Ionophores Containing Oxy- and Ester-Groups. Russ J Electrochem 54, 391–399 (2018). https://doi.org/10.1134/S1023193518040055

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518040055

Keywords

Navigation