Skip to main content
Log in

Electrosynthesis of Н2О2 from О2 in a Gas-Diffusion Electrode Based on Mesostructured Carbon CMK-3

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Mesostructured carbon CMK-3 (Carbon Mesostructured by KAIST) synthesized by the template method is studied as the electrocatalyst for electrosynthesis of Н2О2 from О2 in a gas-diffusion electrode (GDE) in alkaline and acidic solutions. The texture characteristics of the original material and its mixture with hydrophobizer (polytetrafluoroethylene) are studied by the method of low-temperature nitrogen adsorption. The rate constants for hydrogen peroxide decomposition on these materials in alkaline and acidic solutions are calculated. Kinetic parameters of oxygen reduction in alkaline and acidic solutions are determined as well as the capacitance of gas-diffusion electrodes based on mesocarbon. The selectivity of the electrocatalyst is estimated by finding the current fracture γ consumed in oxygen reduction to hydrogen peroxide. Data on the kinetics of hydrogen peroxide accumulation during electrosynthesis of Н2О2 from О2 are obtained. The acidic solution of hydrogen peroxide with the concentration more than 3 M is obtained with the current efficiency higher than 80%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Solyanikova, A.S., Chayka, M.Yu., Boryak, A.V., Kravchenko, T.A., Glotov, A.V., Ponomarenko, I.V., and Kirik, S.D., Composite electrodes of electrochemical capacitors based on carbon materials with different structure, Russ. J. Electrochem., 2014, vol. 50, p. 419

    Article  CAS  Google Scholar 

  2. Li, H., Xi, H., Zhu, S., and Wang, R., Preparation, structural characterization, and electrochemical properties of chemically modified mesoporous carbon, Microporous Mesoporous Mater., 2006, vol. 96, p. 357.

    Article  CAS  Google Scholar 

  3. Xing, W., Qiao, S.Z., Ding, R.G., Li, F., Lu, G.Q., Yan, Z.F., and Cheng, H.M., Superior electric double layer capacitors using ordered mesoporous carbons, Carbon, 2006, vol. 44, p. 216.

    Article  CAS  Google Scholar 

  4. Lei, Z., Bai, D., and Zhao, X.S., Improving the electro capacitive properties of mesoporous CMK-5 carbon with carbon nanotubes and nitrogen doping, Microporous Mesoporous Mater., 2012, vol. 147, p. 86.

    Article  Google Scholar 

  5. Ponomarenko, I.V., Solyanikova, A.S., Chayka, M.Yu., Parfenov, V.A., Kirik, S.D., and Kravchenko, T.A., Activation of mesostructured electrode materials for electrochemical capacitors, Russ. J. Electrochem., 2015, vol. 51, p. 764.

    Article  CAS  Google Scholar 

  6. Zhang, H., Tao, H., Jiang, Y., Jiao Z., Wu, M., and Zhao, B., Ordered CoO/CMK-3 nanocomposites as the anode materials for lithium-ion batteries, J. Power Sources., 2010, vol. 195, p. 2950.

    Article  CAS  Google Scholar 

  7. Huwe, H. and Froba, M., Synthesis and characterization of transition metal and metal oxide nanoparticles inside mesoporous carbon CMK-3, Carbon, 2007, vol. 45, p. 304.

    Article  CAS  Google Scholar 

  8. Prasad, K.R.S., Dhawale, D.S., Joseph, S., Anand, C., Wahab, M.A., Mano, A., Sathish, C.I., Balasubramanian, V.V., Sivakumar, T., and Vinu, A., Post-synthetic functionalization of mesoporous carbon electrodes with copper oxide nanoparticles for supercapacitor application, Microporous Mesoporous Mater., 2013, vol. 172, p. 77.

    Article  CAS  Google Scholar 

  9. Kawase, T. and Yoshitake, H., Cathodes comprising Li2MnSiO4 nanoparticles dispersed in the mesoporous carbon frameworks, CMK-3 and CMK-8, Microporous Mesoporous Mater., 2012, vol. 155, p. 99.

    Article  CAS  Google Scholar 

  10. Fang, B., Kim, J.H., Kim, M., and Yu, J.-S., Ordered hierarchical nanostructured carbon as a highly efficient cathode catalyst support in proton exchange membrane fuel cell, Chem. Mater., 2009, vol. 21, p. 789.

    Article  CAS  Google Scholar 

  11. Bhagiyalakshmi, M., Lee, J.Y., and Jang, H. T., Synthesis of mesoporous magnesium oxide: Its application to CO2 chemisorption, Int. J. Greenhouse Gas Control, 2010, vol. 4, p. 51.

    Article  CAS  Google Scholar 

  12. Park, J., Nabae, Y., Hayakawa, T., and Kakimoto M.-a., Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon, ACS Catal., 2014, vol. 4, p. 3749.

    Article  CAS  Google Scholar 

  13. Haschéa, F., Oezaslan, M., Strasser, P., and Fellinger, T.-P., Electrocatalytic hydrogen peroxide formation on mesoporous non-metal nitrogen-doped carbon catalyst, J. Energy Chem., 2016, vol. 25, p. 251.

    Article  Google Scholar 

  14. Shenga, X., Daemsa, N., Geboesc, B., Kurttepelie, M., Balse, S., Breugelmansc, T., Hubinc, A., Vankelecom, I.F.J., and Pescarmona. P.P., N-doped ordered mesoporous carbons prepared by a two-step nanocasting strategy as highly active and selective electrocatalysts for the reduction of O2 to H2O2, Appl. Catal. B, 2015, vol. 176–177, p. 212.

    Article  Google Scholar 

  15. Perazzolo, V., Durante, C., and Gennaro. A., Nitrogen and sulfur doped mesoporous carbon cathodes for water treatment, J. Electroanal. Chem., 2016, vol. 782, p. 264.

    Article  CAS  Google Scholar 

  16. Kornienko, V.L., Kolyagin, G.A., and Saltykov, Yu.V., in Elektrosintez v gidrofobizirovannykh elektrodakh (Electrosynthesis in Hydrophobized Electrodes), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2011.

    Google Scholar 

  17. Kolyagin, G.A. and Kornienko, V.L., Elektrosintez peroksida vodoroda v gazodiffuzionnom elektrode: Dostizheniya i perspektivy (Electrochemical Synthesis of Hydrogen Peroxide in a Gas-Diffusion Electrode: Achievements and Prospects), Lambert Acad., 2011.

    Google Scholar 

  18. Anastas, P.T. and Warner, J.C., Green Chemistry: Theory and Practice, London: Oxford University, 1998.

    Google Scholar 

  19. Noyori, R., Pursuing practical elegance in chemical synthesis, Chem. Commun., 2005, no. 14, p. 1807.

    Article  Google Scholar 

  20. Schumb, W.C., Satterfield, C.N., and Wentworth, R.L., Hydrogen Peroxide, New York: Reinhold, 1955; translated into Russian.

    Google Scholar 

  21. Khimiya i tekhnologiya perekisi vodoroda (Chemistry and Technology of Hydrogen Peroxide), Seryshev, G.A., Ed., Leningrad: Khimiya, 1984.

  22. Pletcher, D., Indirect oxidations using electrogenerated hydrogen peroxide, Acta Chem. Scand., 1999, vol. 53, p. 745.

    Article  CAS  Google Scholar 

  23. Kornienko, V.L., Kolyagin, G.A., Kornienko, G.V., Chaenko, N.V., Kosheleva, A.M., Kenova, T.A., and Vasil’eva I.S., Use of aqueous hydrogen peroxide solutions prepared by cathodic reduction of oxygen for indirect oxidation of chemical substances in situ: Achievements and prospects, Russ. J. Appl. Chem., 2014, vol. 87, p. 1.

    Article  CAS  Google Scholar 

  24. Berl, B.E., A new cathodic process for the production H2O2, Trans. Electrochem. Soc., 1939, vol. 76, p. 359.

    Article  Google Scholar 

  25. Fioshin, M.Y., Uspekhi v oblasti electrosinteza neorganicheskih soedinenii (Advances in Electrosynthesis of Inorganic Compounds), Moscow: Khimiya, 1974.

    Google Scholar 

  26. Kornienko, G.V., Kolyagin, G.A., Kornienko, V.L., and Parfehov, B.A., Graphitized carbon materials for electrosynthesis of H2O2 from O2 in gas-diffusion electrodes, Russ. J. Electrochem., 2016, vol. 52, p. 983.

    Article  CAS  Google Scholar 

  27. Vert, Zh. L. and Pavlova, V. F., The effect of temperature on the process of electroreduction of oxygen on hydrophobized electrode in 1 M NaOH, Zh. Prikl. Khim., 1988, vol. 61, p.1148.

    CAS  Google Scholar 

  28. Shinae, J., Joo, S.H., Ryoo, R., Kruk, M., Jaroniec, M., Liu, Z., Ohsuna, T., and Terasaki, O. Synthesis of new nanoporous carbon with hexagonally ordered mesostructure, J. Amer. Chem. Soc., 2000, vol. 122, p. 10712.

    Article  Google Scholar 

  29. Ryoo, R., Joo, S.H., Kruk, M., and Jaroniec, M., Ordered mesoporous carbons, Adv. Mater., 2001, vol. 13, no. 9, p. 677.

    Article  CAS  Google Scholar 

  30. Zhao, D.Y, Huo, Q.S, Feng, J.L, Chmelka, B.F, and Stucky G.D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Amer. Chem. Soc., 1998, vol. 120, no. 24, p. 6024.

    Article  CAS  Google Scholar 

  31. Zakharkin, G.I., Tarasevich, M.R., and Burshtein, R.H., Studying oxygen and hydrogen peroxide reactions by using O18. IV. Mechanism of hydrogen peroxide decomposition on various carbon materials, Elektrokhimiya, 1974, vol. 10, p. 1811.

    CAS  Google Scholar 

  32. Alekseev, V.I., Kolichestvennyi analiz (Quantitative Analysis), Moscow: Khimiya, 1972.

    Google Scholar 

  33. Kornienko, V.L., Kolyagin, G.A., Kornienko, G.V., and Parfenov, B.A., Electrosynthesis of H2O2 from O2 in gas-diffusion electrodes on the basis of carbon black CN600. Russ. J. Electrochem., 2017, vol. 53, in press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Kornienko.

Additional information

Original Russian Text © V.L. Kornienko, G.A. Kolyagin, G.V. Kornienko, V.A. Parfenov, I.V. Ponomarenko, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 3, pp. 299–306.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kornienko, V.L., Kolyagin, G.A., Kornienko, G.V. et al. Electrosynthesis of Н2О2 from О2 in a Gas-Diffusion Electrode Based on Mesostructured Carbon CMK-3. Russ J Electrochem 54, 258–264 (2018). https://doi.org/10.1134/S1023193518030060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518030060

Keywords

Navigation