Skip to main content
Log in

Stochastic description of electrochemical discharge using formalism of Kramers–Moyal expansion

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The formalism of Kramers–Moyal expansion is used for a stochastic description of one-stage electrochemical discharge occurring via a single route. In the stochastic model under consideration, an electrochemical reaction is represented as two independent random series of anodic and cathodic elementary acts of charge transfer. Each of two random series obeys its generalized Poisson’s distribution. Three Kramers–Moyal expansions are determined. The first Kramers–Moyal expansion works near the equilibrium potential. It takes into consideration both (anodic and cathodic) series of elementary acts. The second expansion determines the stochastic behavior of electrochemical reaction at high anodic potentials. The third expansion controls the stochastic behavior of electrochemical reaction in the range of high cathodic overpotentials. The dependence of coefficients of the Kramers–Moyal expansion on the macroscopic parameters of electrochemical discharge is determined. In view of interdisciplinary character of the theory of noise and fluctuations, a stochastic description of electrochemical discharge within the framework of Kramers–Moyal expansion is of interest also for the general theory of stochastic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frumkin, A.N., Izbrannye trudy. Elektrodnye protsessy (Selected Works. Electrode Processes), Moscow: Nauka, 1987, p. 27.

    Google Scholar 

  2. Tyagai, V.A., Elektrokhimiya, 1965, no. 1, p. 685.

    CAS  Google Scholar 

  3. Grafov, B.M., Elektrokhimiya, 1966, no. 2, p. 1249.

    CAS  Google Scholar 

  4. Iverson, W.P., J. Electrochem. Soc., 1968, no. 115, p. 617.

    Article  CAS  Google Scholar 

  5. Barker, G.C., J. Electroanal. Chem., 1969, no. 21, p. 127.

    Article  CAS  Google Scholar 

  6. Tyagai, V.A., Electrochim. Acta, 1971, no. 16, p. 1647.

    Article  CAS  Google Scholar 

  7. Gillespie, D.T., Hellander, A., and Petzold, L.R., J. Chem. Phys., 2013, no. 138, p. 170901.

    Article  Google Scholar 

  8. Kramers, H.A., Physica A, 1940, no. 7, p. 284.

    CAS  Google Scholar 

  9. Moyal, J.E., J. Roy. Statist. Soc., 1949, no. 11, p. 150.

    Google Scholar 

  10. Risken, H., Fokker-Planck Equation, Berlin: Springer, 1984, ch.4.

    Book  Google Scholar 

  11. W. Feller. An Introduction to Probability Theory and Its Application., New York: Wiley, 1967, vol. 2, ch. 6, ch.17.

  12. Levich, V.G. and Dogonadze, R.R., Collect. Czech. Chem. Commun., 1961, no. 26, p. 193.

    Article  CAS  Google Scholar 

  13. Marcus, R.A., Annu. Rev. Phys. Chem., 1964, no. 15, p. 155.

    Article  CAS  Google Scholar 

  14. Dogonadze, R.R. and Kuznetsov, A.M., Prog. Surf. Sci., 1975, no. 6, p. 1.

    Article  CAS  Google Scholar 

  15. Kuznetsov, A.M. and Ulstrup, J., Electron Transfer in Chemistry and Biology: Introduction to the Theory, Chichester: Wiley, 1999, ch.11.

    Google Scholar 

  16. Kuznetsov, A.M., Charge Transfer in Chemical Reaction Kinetics. Lausanne: Polytechniques et Universitaires Romandes, 1999, ch.4.

    Google Scholar 

  17. Malakhov, A.N., Kumulyantnyi analiz sluchainykh negaussovskikh protsessov i ikh preobrazovanii (Cumulant Analysis of Random Non-Gaussian Processes and Their Transforms), Moscow: Sovetskoe Radio, 1978.

    Google Scholar 

  18. Grafov, B.M., Russ. J. Electrochem., 2014, no. 50, p. 92.

    Article  CAS  Google Scholar 

  19. Grafov, B.M., Russ. J. Electrochem., 2006, no. 42, p. 1026.

    Article  CAS  Google Scholar 

  20. Kolmogorov, A.N., Atti. Accad. Naz. Lincei, 1931, no. 15, p. 805.

    Google Scholar 

  21. Bartlett, M.S., An Introduction to Stochastic Processes with Special Reference to Methods and Applications, Cambridge: Cambridge Univ. Press, 1955, ch.5.

    Google Scholar 

  22. Bochkov, G.N. and Kuzovle., Yu.E., Sov. Phys.-JETP, 1977, no. 45, p. 125.

    Google Scholar 

  23. Jarzynski, C., Phys. Rev. Lett., 1999, no. 78, p. 2690.

    Article  Google Scholar 

  24. Crooks, G.E., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, 2000, no. 61, p. 2361.

    Article  CAS  Google Scholar 

  25. Pitaevskii, L.P., Phys.-Usp., 2011, no. 54, p. 625.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Grafov.

Additional information

Original Russian Text © B.M. Grafov, 2016, published in Elektrokhimiya, 2016, Vol. 52, No. 12, pp. 1320–1323.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grafov, B.M. Stochastic description of electrochemical discharge using formalism of Kramers–Moyal expansion. Russ J Electrochem 52, 1179–1182 (2016). https://doi.org/10.1134/S1023193516120053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193516120053

Keywords

Navigation