Skip to main content
Log in

Corrosion behavior of aluminum in 1 M HCl solution

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The corrosion behavior of pure (99.999) aluminum in 1 M HCl solution is studied. The regularities of local gas evolution on the surface of test specimen at the open-circuit potential are determined. A number of sites, where hydrogen gas evolves, varies with the time passing through a maximum. The sizes of bubbles prior to their detachment from the specimen surface are determined. The time dependences of gas bubble radius in the course of the bubble growth are obtained. From the experimental results, it is concluded that, at the sites of hydrogen gas evolution, the cathodic reaction prevails, whereas the anodic reaction (aluminum etching) proceeds at the rest specimen surface area. No pits form at the sites of hydrogen evolution during the experiments (up to 5 h). The quantitative analysis of the cathodic polarization curve enabled us to estimate the rate (the corrosion current density) of almost general corrosion after the decay of local gas evolution. The long-term experiments (for 2 months) showed that the pitting corrosion of pure aluminum takes place in 1 M HCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. El-Etre, A.Y., Corros. Sci., 2001, vol. 43, p. 1031.

    Article  CAS  Google Scholar 

  2. Rethinnagiri, V., Jeyaprakash, P., Arunkumar, M., Maheswaran, V., and Madhiyalagan, A., Adv. Appl. Sci. Res., 2012, vol. 3, p. 1718.

    CAS  Google Scholar 

  3. Ali, A.I. and Foaud, N., J. Mater. Environ. Sci., 2012, vol. 3, p. 917.

    CAS  Google Scholar 

  4. Branzoi, V., Golgovici, F., and Branzoi, F., Mater. Chem. Phys., 2002, vol. 78, p. 122.

    Article  CAS  Google Scholar 

  5. Abiola, O. and Tobun, Y., Chinese Chem. Lett., 2010, vol. 21, p. 1449.

    Article  CAS  Google Scholar 

  6. Li, X., Deng, S., and Xie, X., Corros. Sci., 2014, vol. 81, p. 162.

    Article  CAS  Google Scholar 

  7. Li, X., Deng, S., and Xie, X., J. Taiwan Inst. Chem. Eng., 2014, vol. 45, p. 1865.

    Article  CAS  Google Scholar 

  8. Abd, ElAal E.E., Abd, El., Wanees, S., Farouk, A., Abd, El., and Haleem, S.M., Corros. Sci., 2013, vol. 68, p. 14.

    Article  Google Scholar 

  9. Hassan, R.M. and Zaafarany, I.A., Materials, 2013, vol. 6, p. 2436.

    Article  CAS  Google Scholar 

  10. Li, X., Deng, S., and Fu, H., Corros. Sci., 2011, vol. 53, p. 1529.

    Article  CAS  Google Scholar 

  11. Abdallah, M., Corros. Sci., 2004, vol. 46, p. 1981.

    Article  CAS  Google Scholar 

  12. Akimov, G.V., Stoklitskii, L.I., and Paleolog, E.N., Trudy Instituta fizicheskoi khmii. Vol. III. Issledovaniya po korrozii metallov. No. 2. Novye metody i pribory dlya korrozionnykh ispytanii (Proceedings of Institute of Physical Chemistry. Vol. III. Studies on Metal Corrosion. No. 2. New Methods and Instruments for Corrosion Tests)), Moscow: Akad. Nauk SSSR, 1951.

    Google Scholar 

  13. Curioni, M., Electrochim. Acta, 2014, vol. 120, p. 284.

    Article  CAS  Google Scholar 

  14. King, A.D., Birbilis, N., and Scully, J.R., Electrochim. Acta, 2014, vol. 121, p. 394.

    Article  CAS  Google Scholar 

  15. Lebouil, S., Duboin, A., Monti, F., Tabeling, P., Volovitch, P., and Ogle, K., Electrochim. Acta, 2014, vol. 124, p. 176.

    Article  CAS  Google Scholar 

  16. Yurt, A., Ulutas, S., and Dal, H., Appl. Surf. Sci., 2006, vol. 253, p. 919.

    Article  CAS  Google Scholar 

  17. Brett, C.M.A., Corros. Sci., 1992, vol. 33, no. 2, p. 203.

    Article  CAS  Google Scholar 

  18. Rybalka, K.V., Beketaeva, L.A., and Davydov, A.D., Russ. J. Electrochem. 2014, vol. 50, p. 108.

    Article  CAS  Google Scholar 

  19. Stansbury, E.E. and Buchanan, R.A., Fundamentals of the Electrochemical Corrosion, Materials Park, Ohio: ASM International, 2000.

    Google Scholar 

  20. McCafferty, E., Introduction to Corrosion Science, New York: Springer, 2010.

    Book  Google Scholar 

  21. Mansfeld, F., in Advances in Corrosion Science and Technology, vol. 6, Fontana, G. and Staehle, R.W., Eds., New York: Plenum, 1976, p. 163.

  22. Liu, X., Okafor, P.C., and Zheng, Y.G., Corros. Sci., 2009, vol. 51, p. 744.

    Article  CAS  Google Scholar 

  23. Rybalka, K.V., Beketaeva, L.A., and Davydov, A.D., Corros. Sci., 2011, vol. 53, p. P. 630.

    Article  CAS  Google Scholar 

  24. Pyun, S.-I. and Lee, W.-J., Corros. Sci., 2001, vol. 43, p. 353.

    Article  CAS  Google Scholar 

  25. Nisancioglu, K. and Holtan, H., Werkst. Korros., 1979, vol. 30, p. 105.

    Article  CAS  Google Scholar 

  26. Storchai, E.I. and Turkovskaya, A.V., Zashch. Met., 1965, vol. 1, no. 3, p. 293.

    CAS  Google Scholar 

  27. Nefedov, V.G., Matveev, V.V., Serebritskii, V.M., Ksenzhek, O.S., and Chikol’ba, T.Yu., Elektrokhimiya, 1991, vol. 27, p. 490.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Rybalka.

Additional information

Original Russian Text © K.V. Rybalka, L.A. Beketaeva, A.D. Davydov, 2016, published in Elektrokhimiya, 2016, Vol. 52, No. 5, pp. 522–528.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybalka, K.V., Beketaeva, L.A. & Davydov, A.D. Corrosion behavior of aluminum in 1 M HCl solution. Russ J Electrochem 52, 463–469 (2016). https://doi.org/10.1134/S1023193516050104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193516050104

Keywords

Navigation