Skip to main content
Log in

Molecular dynamics study of electric double layer in nanochannel

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The Electric Double Layer for electroosmotic flow of NaCl aqueous solution in nanochannels is studied numerically in this paper using Molecular Dynamics (MD) approach. For an electrolyte solution flowing in 40 nm nanochannel, two different conditions for charge on channel wall are defined; first the charge on the wall is held as equal to the amount that was previously reported by the experiment when charge dissociation on silicon dioxide wall occurs and second the constant surface charge density on the wall is assumed. The MD based numerical results show great agreement with experimental data for zeta potential in the range of 10−2−10−1 M. The MD simulations show that Debye length decreases as NaCl concentration increases. Moreover the electric conductance and velocity profile in nanochannel could be extracted from MD results. Performance of the MD approach as a most promising numerical method to study electrokinetic phenomena in nanoscale devices is then verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schoch, R.B., Han, J., and Renaud, Ph., Rev. Mod. Phys., 2008, vol. 80, p. 839.

    Article  CAS  Google Scholar 

  2. Qiao, R. and Aluru, N.R., J. Chem. Phys., 2003, vol. 118, p. 4692.

    Article  CAS  Google Scholar 

  3. Iler, R.K., The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry, New York: John Wiley & Sons, 1979.

    Google Scholar 

  4. Overbeek, J.Th.G. and Lijklema, J., Electrical Potential in Colloidal System, New York: Academic Press, 1967.

    Google Scholar 

  5. Pashley, R.M. and Karaman, M.E., Applied Colloid and Surface Chemistry, England: John Wiley & Sons Ltd, 2004.

    Book  Google Scholar 

  6. Verwey, E.J.W. and Overbeek, J.Th.G., Theory of the Stability of Lyophobic Colloids, Amsterdam: Elsevier, 1948.

    Google Scholar 

  7. Burgreen, D. and Nakache, F.R., Chem. Phys., 1964, vol. 68, p. 1084.

    Article  Google Scholar 

  8. Wang, M. and Revil, A., J. Coll. Sci., 2010, vol. 343, p. 381.

    Article  CAS  Google Scholar 

  9. Hildreth, D., J. Phys. Chem., 1970, vol. 74, pp. 2006.

    Article  CAS  Google Scholar 

  10. Skipper, N.T., Smalley, M.V., and Williams, G.D., J. Phys. Chem., 1995, vol. 99, p. 14201.

    Article  CAS  Google Scholar 

  11. Pennathur, S. and Santiago, Juan G., Anal. Chem., 2005, vol. 77, p. 6782.

    Article  CAS  Google Scholar 

  12. Bazant, M.Z. and Squires, T.M., Phys. Rev. Lett., 2004, vol. 92, p. 066101.

    Article  Google Scholar 

  13. Zarzycki, P. and Rosso, K.M., J. Phys. Chem., 2010, vol. 114, p. 10019.

    CAS  Google Scholar 

  14. Vatamanu, J., Borodin, O., and Smith, G.D., Phys. Chem. Chem. Phys., 2010, vol. 12, p. 170.

    Article  CAS  Google Scholar 

  15. Li, Y., Xu, J., and Li, D., Microfluid Nanofluid, 2010, vol. 9, p. 1011.

    Article  Google Scholar 

  16. Cruz-Chu, E.R., Aksimentiev, A., and Schulten, K., J. Phys. Chem., 2006, vol. 110, p. 21497.

    Article  CAS  Google Scholar 

  17. Aksimentiev, A., Brunner, R., and Cruz-Chú, E., EEE Nanotechnol. Mag., 2009, vol. 3, p. 20.

    Article  Google Scholar 

  18. Zhou, J.D., Cui, S.T., and Cochran, H.D., Mol. Phys., 2003, vol. 101, p. 1089.

    Article  CAS  Google Scholar 

  19. Phillips, J.C., Braun, R., Wang, W., and Gumbart, J., J. Comp. Chem., 2005, vol. 26, p. 1781.

    Article  CAS  Google Scholar 

  20. Ni, H. and Amme, R.C., J. Coll. Interface Sci., 2003, vol. 260, p. 344.

    Article  CAS  Google Scholar 

  21. Bhandarkar, M., et al., NAMD User’s Guide, Urbana: University of Illinois and Beckman Institute, 2010.

    Google Scholar 

  22. Comer, J.R., Wells, D.B., and Aksimentiev, A., Modeling Nanopores for Sequencing DNA, Urnaba: University of Illinois Urbana-Champaign, 2010.

    Google Scholar 

  23. Soules, T.F., Gilmer, G.H., and Matthews, M.J., J. Non-Cryst. Solids, 2011, vol. 357, p. 1564.

    Article  CAS  Google Scholar 

  24. Brooks, B.R., et al., J. Comput. Chem., 2009, vol. 30, p. 1545.

    Article  CAS  Google Scholar 

  25. Li, Ju, Basic Molecular Dynamics, Netherlands: Springer, 2005.

    Google Scholar 

  26. Qun, M., Novel Multiscale Algorithms for Molecular Dynamics, USA: University of Notre Dame, 2004.

    Google Scholar 

  27. Baldessari, F. and Santiago, J.G., J. Coll. Interface Sci., 2008, vol. 331, p. 526.

    Article  Google Scholar 

  28. Kitamura, A., Fujiwara, K., and Yamamoto, T., J. Nucl. Sci. Tech., 1999, vol. 36, p. 1167.

    Article  CAS  Google Scholar 

  29. Crespy, A., Bolèveb, A., and Revil, A., J. Coll. Interface Sci., 2007, vol. 305, p. 188.

    Article  CAS  Google Scholar 

  30. Butt, H.J., Graf, K., and Kappl, M., Physics and Chemistry of Interfaces, Berlin: WTLEY-VCH, 2003.

    Book  Google Scholar 

  31. Zhu, W., Singer, S.J., Zheng, Z., and Conlisk, A.T., Phys. Rev., 2005, vol. 71, p.041501.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Kamali.

Additional information

Published in Russian in Elektrokhimiya, 2015, Vol. 51, No. 1, pp. 58–65.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alishahi, M., Kamali, R. & Abouali, O. Molecular dynamics study of electric double layer in nanochannel. Russ J Electrochem 51, 49–55 (2015). https://doi.org/10.1134/S1023193515010024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193515010024

Keywords

Navigation