Skip to main content
Log in

Methylation of the Retrotransposon LINE-1 Subfamilies in Chorionic Villi of Miscarriages

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Miscarriage is potentially associated with abnormal epigenetic regulation of genes responsible for the development of the embryo and placenta. The aim of this work was to analyze the methylation level of various subfamilies of the LINE-1 retrotransposon, which makes up about 17% of the entire genome, in chorionic villi of spontaneous abortions of the first trimester of pregnancy with different karyotypes, including the most common aneuploidies. The methylation profile in the LINE-1 retrotransposon promoter was analyzed using targeted bisulfite massive parallel sequencing in chorionic villi of induced abortions (n = 39), spontaneous abortions with normal karyotype (n = 173), trisomy 16 (n = 62) and monosomy X (n = 46), and peripheral blood lymphocytes of healthy volunteers (n = 17). The level of methylation of the LINE-1 retrotransposon subfamilies in the control groups of adult lymphocytes and chorionic villi of induced abortions was the highest for evolutionarily young L1HS subfamilies, lower for the more ancient L1PA2 and L1PA3 subfamilies, and the lowest for the even more ancient L1PA4 subfamily. In the groups of spontaneous abortions, an increased level of LINE-1 methylation was observed, and this effect was more pronounced for the older LINE-1 subfamilies. The revealed patterns indicate less control over the older subfamilies of the LINE-1 retrotransposon in the human genome, which can potentially be used as regulatory elements for nearby genes involved in embryonic development. An increase in the level of methylation of such sequences can disrupt the development of the placenta and embryo and make a certain contribution to miscarriage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Quenby, S., Gallos, I.D., Dhillon-Smith, R.K., et al., Miscarriage matters: the epidemiological, physical, psychological, and economic costs of early pregnancy loss, Lancet, 2021, vol. 397, no. 10285, pp. 1658—1667. https://doi.org/10.1016/S0140-6736(21)00682-6

    Article  CAS  PubMed  Google Scholar 

  2. Li, T.C., Makris, M., Tomsu, M., et al., Recurrent miscarriage: aetiology, management and prognosis, Hum. Reprod. Update, 2002, vol. 8, no. 5, pp. 463—481. https://doi.org/10.1093/humupd/8.5.463

    Article  CAS  PubMed  Google Scholar 

  3. Red-Horse, K., Zhou, Y., Genbacev, O., et al., Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface, J. Clin. Invest., 2004, vol. 114, no. 6, pp. 744—754. https://doi.org/10.1172/JCI22991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jauniaux, E., Poston, L., and Burton, G.J., Placental-related diseases of pregnancy: involvement of oxidative stress and implications in human evolution, Hum. Reprod. Update, 2006, vol. 12, no. 6, pp. 747—755. https://doi.org/:dml016

  5. Shridhar, V., Chu, T., Simhan, H., et al., High-resolution analysis of the human placental DNA methylome in early gestation, Prenat. Diagn., 2020, vol. 40, no. 4, pp. 481—491. https://doi.org/10.1002/pd.5618

    Article  CAS  PubMed  Google Scholar 

  6. Robinson, W.P. and Price, E.M., The human placental methylome, Cold Spring Harbor Perspect. Med., 2015, vol. 5, no. 5. https://doi.org/10.1101/cshperspect.a023044

  7. Vlahos, A., Mansell, T., Saffery, R., et al., Human placental methylome in the interplay of adverse placental health, environmental exposure, and pregnancy outcome, PLoS Genet., 2019, vol. 15, no. 8. https://doi.org/10.1371/journal.pgen.1008236

  8. Etchegaray, E., Naville, M., Volff, J.N., et al., Transposable element-derived sequences in vertebrate development, Mobile DNA, 2021, vol. 12, no. 1, p. 1. https://doi.org/10.1186/s13100-020-00229-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grow, E.J., Flynn, R.A., Chavez, S.L., et al., Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells, Nature, 2015, vol. 522, no. 7555, pp. 221—225. https://doi.org/10.1038/nature14308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reiss, D., Zhang, Y., and Mager, D.L., Widely variable endogenous retroviral methylation levels in human placenta, Nucleic Acids Res., 2007, vol. 35, no. 14, pp. 4743—4754. https://doi.org/10.1093/nar/gkm455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee, J., Cordaux, R., Han, K., et al., Different evolutionary fates of recently integrated human and chimpanzee LINE-1 retrotransposons, Gene, 2007, vol. 390, nos. 1—2, pp. 18—27. https://doi.org/10.1016/j.gene.2006.08.029

    Article  CAS  PubMed  Google Scholar 

  12. Khan, H., Smit, A., and Boissinot, S., Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates, Genome Res., 2006, vol. 16, no. 1, pp. 78—87. https://doi.org/10.1101/gr.4001406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boissinot, S. and Sookdeo, A., The evolution of LINE-1 in vertebrates, Genome Biol. Evol., 2016, vol. 8, no. 12, pp. 3485—3507. https://doi.org/10.1093/gbe/evw247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vasilyev, S.A., Tolmacheva, E.N., Vasilyeva, O.Y., et al., LINE-1 retrotransposon methylation in chorionic villi of first trimester miscarriages with aneuploidy, J. Assist. Reprod. Genet., 2021, vol. 38, no. 1, pp. 139—149. https://doi.org/10.1007/s10815-020-02003-1

    Article  PubMed  Google Scholar 

  15. Lebedev, I.N., Ostroverkhova, N.V., Nikitina, T.V., et al., Features of chromosomal abnormalities in spontaneous abortion cell culture failures detected by interphase FISH analysis, Eur. J. Hum. Genet., 2004, vol. 12, no. 7, pp. 513—520. https://doi.org/10.1038/sj.ejhg.5201178

    Article  CAS  PubMed  Google Scholar 

  16. Vasilyev, S.A., Timoshevsky, V.A., and Lebedev, I.N., Cytogenetic mechanisms of aneuploidy in somatic cells of chemonuclear industry professionals with incorporated plutonium-239, Russ. J. Genet., 2010, vol. 46, no. 11, pp. 1381—1385. https://doi.org/10.1134/s1022795410110141

    Article  CAS  Google Scholar 

  17. Vasilyev, S.A., Markov, A.V., Vasilyeva, O.Y., et al., Method of targeted bisulfite massive parallel sequencing of the human LINE-1 retrotransposon promoter, MethodsX, 2021, vol. 8. https://doi.org/10.1016/j.mex.2021.101445

  18. Fernandes, J.D., Zamudio-Hurtado, A., Clawson, H., et al., The UCSC repeat browser allows discovery and visualization of evolutionary conflict across repeat families, Mobile DNA, 2020, vol. 11, p. 13. https://doi.org/10.1186/s13100-020-00208-w

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zheng, Y., Joyce, B.T., Liu, L., et al., Prediction of genome-wide DNA methylation in repetitive elements, Nucleic Acids Res., 2017, vol. 45, no. 15, pp. 8697—8711. https://doi.org/10.1093/nar/gkx587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zadora, J., Singh, M., Herse, F., et al., Disturbed placental imprinting in preeclampsia leads to altered expression of DLX5, a human-specific early trophoblast marker, Circulation, 2017, vol. 136, no. 19, pp. 1824—1839. https://doi.org/10.1161/CIRCULATIONAHA.117.028110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Criscione, S.W., Theodosakis, N., Micevic, G., et al., Genome-wide characterization of human L1 antisense promoter-driven transcripts, BMC Genomics, 2016, vol. 17, p. 463. https://doi.org/10.1186/s12864-016-2800-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chishima, T., Iwakiri, J., and Hamada, M., Identification of transposable elements contributing to tissue-specific expression of long non-coding RNAs, Genes (Basel), 2018, vol. 9, no. 1. https://doi.org/10.3390/genes9010023

  23. Pourrajab, F. and Hekmatimoghaddam, S., Transposable elements, contributors in the evolution of organisms (from an arms race to a source of raw materials), Heliyon, 2021, vol. 7, no. 1. https://doi.org/10.1016/j.heliyon.2021.e06029

  24. Demeneva, V.V., Tolmacheva, E.N., Nikitina, T.V., et al., Expression of the NUP153 and YWHAB genes from their canonical promoters and alternative promoters of the LINE-1 retrotransposon in the placenta of the first trimester of pregnancy, Vavilovskii Zh. Genet. Sel., 2023, vol. 27, no. 1, pp. 63—71. https://doi.org/10.18699/VJGB-23-09

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, grant no. 23-15-00341.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Vasilyev.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All procedures performed in human research comply with the ethical standards of the institutional and/or national research ethics committee and the 1964 Declaration of Helsinki and its subsequent amendments or comparable ethical standards.

Informed voluntary consent was obtained from each of the participants included in the study.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilyev, S.A., Demeneva, V.V., Tolmacheva, E.N. et al. Methylation of the Retrotransposon LINE-1 Subfamilies in Chorionic Villi of Miscarriages. Russ J Genet 59, 1358–1365 (2023). https://doi.org/10.1134/S1022795423120141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795423120141

Keywords:

Navigation