Skip to main content
Log in

Genome-Wide Selection Signal Analysis of Australian Boer Goat by Insertion/Deletion Variants

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Selection in breeds for commercial goat is needed for production efficiency, growth trait alteration, and improved livestock quality. Boer goat is famous for its stable production performance, fast growth rate, and high meat production. Detecting selective signatures in its genome can elucidate selection mechanisms for its economic and adaptive traits. In this study, 1 122 858 InDels were identified based on the whole genomes of 46 Australian Boer goats and 81 indigenous goats. FST was used to identify the candidate selection signatures in 127 goats. A total of 11 229 InDels were obtained from the top 1% of all InDels, and 1239 candidate genes were annotated. A total of 1193 and 476 candidate genes were involved in 4726 GO terms and 299 KEGG pathways, respectively. Many genes were related to muscle development (MEF2C, MAPK14, TMOD1, etc.), reproduction (SRD5A1, FBXW11, DMRT1, etc.), immunity (CD200, SGK1, IL17RB, etc.) and metabolism (INSR, STXBP3, H6PD, etc.). The results provide novel and important insights into the genetic basis of selection in Boer goat and may be useful for goat molecular breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Malan, S.W., The improved Boer goat, Small Ruminant Res., 2000, vol. 36, no. 2, pp. 165—170.

    Article  Google Scholar 

  2. Silveira, L.F., Stewart, P.M., Thomas, M., Clark, D.A., Bouloux, P.M., and MacColl, G.S., Novel homozygous splice acceptor site GnRH receptor (GnRHR) mutation: human GnRHR “knockout,” J. Clin. Endocrinol. Metab., 2002, vol. 87, no. 6, pp. 2973—2977.

    Google Scholar 

  3. Karolak, J.A., Bacolla, A., Liu, Q., Lantz, P.E., Petty, J., Trapane, P., Panzer, K., Totapally, B.R., Niu, Z., Xiao, R., Xie, N.G., Wu, L.R., Szafranski, P., Zhang, D.Y., and Stankiewicz, P., A recurrent 8 bp frameshifting indel in FOXF1 defines a novel mutation hotspot associated with alveolar capillary dysplasia with misalignment of pulmonary veins, Am. J. Med. Genet., Part A, 2019, vol. 179, no. 11, pp. 2272—2276.

    Article  Google Scholar 

  4. Li, H., Wang, X., Chen, H., Qu, L., and Lan, X., A 17-bp InDel (rs668420586) within Goat CHCHD7 gene located in growth-related QTL affecting body measurement traits, 3 Biotech. 2020, vol. 10, no. 10, p. 441.

  5. Akhatayeva, Z., Mao, C., Jiang, F., Pan, C., Lin, C., Hao, K., Lan, T., Chen, H., Zhang, Q., and Lan, X., Indel variants within the PRL and GHR genes associated with sheep litter size, Reprod. Domest. Anim., 2020, vol. 55, no. 11, pp. 1470—1478.

    Article  Google Scholar 

  6. Chen, M., Wang, J., Liu, N., Cui, W., Dong, W., Xing, B., and Pan, C., Pig Sox9: expression profiles of Sertoli cell (SCs) and a functional 18 bp indel affecting testis weight, Theriogenology, 2019, vol. 138, pp. 94—101.

    Article  Google Scholar 

  7. Zhang, Y., Wang, K., Liu, J., Zhu, H., Qu, L., Chen, H., Lan, X., Pan, C., and Song, X., An 11-bp indel polymorphism within the CSN1S1 gene is associated with milk performance and body measurement traits in chinese goats, Animals (Basel), 2019, vol. 9, no. 12.

  8. Li, H., Xu, H., Akhatayeva, Z., Liu, H., Lin, C., Han, X., Lu, X., Lan, X., Zhang, Q., and Pan, C., Novel indel of the sheep FecB gene and their effects on litter size, Gene, 2021, vol. 767, p. 145176.

    Article  Google Scholar 

  9. Cui, W., Liu, N., Zhang, X., Zhang, Y., Qu, L., Yan, H., Lan, X., Dong, W., and Pan, C., A 20-bp insertion/deletion (indel) polymorphism within the CDC25A gene and its associations with growth traits in goat, Arch. Anim. Breed., 2019, vol. 62, no. 1, pp. 353—360.

    Article  Google Scholar 

  10. Ju, X., Huang, X., Zhang, M., Lan, X., Wang, D., Wei, C., and Jiang, H., Effects of eight indel variants in FHIT on milk traits in Xinjiang brown cattle, Anim. Biotechnol., 2021, vol. 32, no. 4, pp. 486—494.

    Article  Google Scholar 

  11. Kang, Z., Zhang, S., He, L., Zhu, H., Wang, Z., Yan, H., Huang, Y., Dang, R., Lei, C., Chen, H., Qu, L., Lan, X., and Pan, C., 14-bp functional deletion within the CMTM2 gene is significantly associated with litter size in goat, Theriogenology, 2019, vol. 139, pp. 49—57.

    Article  Google Scholar 

  12. Wang, K., Yan, H., Xu, H., Yang, Q., Zhang, S., Pan, C., Chen, H., Zhu, H., Liu, J., Qu, L., and Lan, X., A novel indel within goat casein alpha S1 gene is significantly associated with litter size, Gene, 2018, vol. 671, pp. 161—169.

    Article  Google Scholar 

  13. Wang, Z., Zhang, X., Jiang, E., Yan, H., Zhu, H., Chen, H., Liu, J., Qu, L., Pan, C., and Lan, X., InDels within caprine IGF2BP1 intron 2 and the 3'-untranslated regions are associated with goat growth traits, Anim. Genet., 2020, vol. 51, no. 1, pp. 117—121.

    Article  Google Scholar 

  14. Zhang, Q., Jin, Y., Jiang, F., Cheng, H., Wang, Y., Lan, X., and Song, E., Relationship between an indel mutation within the SIRT4 gene and growth traits and in Chinese cattle, Anim. Biotechnol., 2019, vol. 30, no. 4, pp. 352—357.

    Article  Google Scholar 

  15. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin, R., The sequence alignment/map format and samtools, Bioinformatics, 2009, vol. 25, no. 16, pp. 2078—2079.

    Article  Google Scholar 

  16. Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., McVean, G., and Durbin, R., The variant call format and VCFtools, Bioinformatics, 2011, vol. 27, no. 15, pp. 2156—2158.

    Article  Google Scholar 

  17. Hudson, R.R., Slatkin, M., and Maddison, W.P., Estimation of levels of gene flow from DNA sequence data, Genetics, 1992, vol. 132, no. 2, pp. 583—589.

    Article  Google Scholar 

  18. Wang, K., Li, M., and Hakonarson, H., ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data, Nucleic Acids Res., 2010, vol. 38, no. 16. e164.

    Article  Google Scholar 

  19. Zeng, L., Fan, X., Wang, X., Deng, H., Zhang, K., Zhang, X., He, S., Li, N., Han, Q., and Liu, Z., Bioinformatics analysis based on multiple databases identifies hub genes associated with hepatocellular carcinoma, Curr. Genomics, 2019, vol. 20, no. 5, pp. 349—361.

    Article  Google Scholar 

  20. Jung, K., Saif, L.J., and Wang, Q., Porcine epidemic diarrhea virus (PEDV): an update on etiology, transmission, pathogenesis, and prevention and control, Virus Res., 2020, vol. 286, p. 198045.

    Article  Google Scholar 

  21. Zhang, W., Yang, M., Wang, Y., Wu, X., Zhang, X., Ding, Y., and Yin, Z., Genomic analysis reveals selection signatures of the Wannan Black pig during domestication and breeding, Asian-Australas. J. Anim. Sci., 2020, vol. 33, no. 5, pp. 712—721.

    Article  Google Scholar 

  22. Zhou, Z., Huang, B., Lai, Z., Li, S., Wu, F., Qu, K., Jia, Y., Hou, J., Liu, J., Lei, C., and Dang, R., The distribution characteristics of a 19-bp indel of the PLAG1 gene in Chinese cattle, Animals (Basel), 2019, vol. 9, no. 12.

  23. Xu, Y., Shi, T., Zhou, Y., Liu, M., Klaus, S., Lan, X., Lei, C., and Chen, H., A novel PAX7 10-bp indel variant modulates promoter activity, gene expression and contributes to different phenotypes of Chinese cattle, Sci. Rep., 2018, vol. 8, no. 1, p. 1724.

    Article  Google Scholar 

  24. Wu, M., Zhao, H., Tang, X., Li, Q., Yi, X., Liu, S., and Sun, X., Novel indels of GHR, GHRH, GHRHR and their association with growth traits in seven Chinese sheep breeds, Animals (Basel), 2020, vol. 10, no. 10.

  25. Zhao, H., He, S., Wang, S., Zhu, Y., Xu, H., Luo, R., Lan, X., Cai, Y., and Sun, X., Two new insertion/deletion variants of the PITX2 gene and their effects on growth traits in sheep, Anim. Biotechnol., 2018, vol. 29, no. 4, pp. 276—282.

    Article  Google Scholar 

  26. Black, B.L. and Olson, E.N., Transcriptional control of muscle development by myocyte enhancer factor-2 (Mef2) proteins, Annu. Rev. Cell Dev. Biol., 1998, vol. 14, pp. 167—196.

    Article  Google Scholar 

  27. Jin, W., Liu, M., Peng, J., and Jiang, S., Function analysis of Mef2c promoter in muscle differentiation, Biotechnol. Appl. Biochem., 2017, vol. 64, no. 5, pp. 647—656.

    Article  Google Scholar 

  28. Wang, Y., Xiao, X., and Wang, L., In vitro characterization of goat skeletal muscle satellite cells, Anim. Biotechnol., 2020, vol. 31, no. 2, pp. 115—121.

    Article  Google Scholar 

  29. Chen, L., Cheng, B., Li, L., Zhan, S., Wang, L., Zhong, T., Chen, Y. and Zhang, H., The molecular characterization and temporal-spatial expression of myocyte enhancer factor 2 genes in the goat and their association with myofiber traits, Gene, 2015, vol. 555, no. 2, pp. 223—230.

    Article  Google Scholar 

  30. Legerlotz, K. and Smith, H.K., Role of myod in denervated, disused, and exercised muscle, Muscle Nerve, 2008, vol. 38, no. 3, pp. 1087—1100.

    Article  Google Scholar 

  31. Caretti, G., Schiltz, R.L., Dilworth, F.J., Di Padova, M., Zhao, P., Ogryzko, V., Fuller-Pace, F.V., Hoffman, E.P., Tapscott, S.J., and Sartorelli, V., The RNA helicases P68/P72 and the noncoding RNA SRA are coregulators of myod and skeletal muscle differentiation, Dev. Cell, 2006, vol. 11, no. 4, pp. 547—560.

    Article  Google Scholar 

  32. Mathew, S.J., Hansen, J.M., Merrell, A.J., Murphy, M.M., Lawson, J.A., Hutcheson, D.A., Hansen, M.S., Angus-Hill, M., and Kardon, G., Connective tissue fibroblasts and Tcf4 regulate myogenesis, Development, 2011, vol. 138, no. 2, pp. 371—384.

    Article  Google Scholar 

  33. Kardon, G., Harfe, B.D., and Tabin, C.J., A TCF4-positive mesodermal population provides a prepattern for vertebrate limb muscle patterning, Dev. Cell, 2003, vol. 5, no. 6, pp. 937—944.

    Article  Google Scholar 

  34. Mao Yanwei, Hopkins, D.L., Zhang Yimin, and Luo Xin, Consumption patterns and consumer attitudes to beef and sheep meat in China, Am. J. Food Nutr., 2016, vol. 4, no. 2, pp. 30—39.

    Google Scholar 

  35. Wu, W., Zhang, W., Choi, M., Zhao, J., Gao, P., Xue, M., Singer, H.A., Jourd’heuil, D., and Long, X., Vascular smooth muscle-MAPK14 is required for neointimal hyperplasia by suppressing VSMC differentiation and inducing proliferation and inflammation, Redox Biol., 2019, vol. 22, p. 101137.

    Article  Google Scholar 

  36. Wissing, E.R., Boyer, J.G., Kwong, J.Q., Sargent, M.A., Karch, J., McNally, E.M., Otsu, K., and Molkentin, J.D., P38α MAPK underlies muscular dystrophy and myofiber death through a bax-dependent mechanism, Hum. Mol. Genet., 2014, vol. 23, no. 20, pp. 5452—5463.

    Article  Google Scholar 

  37. Thamodaran, V. and Bruce, A.W., P38 (MAPK14/11) occupies a regulatory node governing entry into primitive endoderm differentiation during preimplantation mouse embryo development, Open Biol., 2016, vol. 6, no. 9.

  38. Russell, D.W. and Wilson, J.D., Steroid 5 alpha-reductase: two genes/two enzymes, Annu. Rev. Biochem., 1994, vol. 63, pp. 25—61.

    Article  Google Scholar 

  39. Conley, A.J. and. Ball, B.A, Steroids in the establishment and maintenance of pregnancy and at parturition in the mare, Reproduction, 2019, vol. 158, no. 6, pp. R197—R208.

    Article  Google Scholar 

  40. Zhao, Y., Gao, N., Li, X., El-Ashram, S., Wang, Z., Zhu, L., Jiang, W., Peng, X., Zhang, C., Chen, Y., and Li, Z., Identifying candidate genes associated with sperm morphology abnormalities using weighted single-step GWAS in a Duroc boar population, Theriogenology, 2020, vol. 141, pp. 9—15.

    Article  Google Scholar 

  41. Han, Y., Zhuang, Q., Sun, B., Lv, W., Wang, S., Xiao, Q., Pang, B., Zhou, Y., Wang, F., Chi, P., Wang, Q., Li, Z., Zhu, L., Li, F., Deng, D., Chiang, Y.-C., Li, Z., and Ren, R., Crystal structure of steroid reductase SRD5A reveals conserved steroid reduction mechanism, Nat. Commun., 2021, vol. 12, no. 1, p. 449. https://doi.org/10.1038/s41467-020-20675-2

    Article  Google Scholar 

  42. Morohoshi, A., Nakagawa, T., Nakano, S., Nagasawa, Y., and Nakayama, K., The ubiquitin ligase subunit B-TrCP in Sertoli cells is essential for spermatogenesis in mice, Dev. Biol., 2019, vol. 445, no. 2, pp. 178—188.

    Article  Google Scholar 

  43. Matson, C.K., Murphy, M.W., Sarver, A.L., Griswold, M.D., Bardwell, V.J., and Zarkower, D., DMRT1 prevents female reprogramming in the postnatal mammalian testis, Nature, 2011, vol. 476, no. 7358, pp. 101—104.

    Article  Google Scholar 

  44. Wei, Y., Yang, D., Du, X., Yu, X., Zhang, M., Tang, F., Ma, F., Li, N., Bai, C., Li, G., and Hua, J., Interaction between DMRT1 and PLZF protein regulates self-renewal and proliferation in male germline stem cells, Mol. Cell. Biochem., 2021, vol. 476, no. 2, pp. 1123—1134.

    Article  Google Scholar 

  45. Serra, N., Velte, E.K., Niedenberger, B.A., Kirsanov, O., and Geyer, C.B., The mTORC1 component RPTOR is required for maintenance of the foundational spermatogonial stem cell pool in mice, Biol. Reprod., 2019, vol. 100, no. 2, pp. 429—439.

    Article  Google Scholar 

  46. Barclay, A.N, Different reticular elements in rat lymphoid tissue identified by localization of Ia, Thy-1 and MRC OX 2 antigens, Immunology, 1981, vol. 44, no. 4, pp. 727—736.

    Google Scholar 

  47. Hoek, R.M., Ruuls, S.R., Murphy, C.A., Wright, G.J., Goddard, R., Zurawski, S.M., Blom, B., Homola, M.E., Streit, W.J., Brown, M.H., Barclay, A.N., and Sedgwick, J.D., Down-regulation of the macrophage lineage through interaction with OX2 (CD200), Science, 2000, vol. 290, no. 5497, pp. 1768—1771.

    Article  Google Scholar 

  48. Yan, J.J., Koo, T.Y., Lee, H.S., Lee, W.B., Kang, B., Lee, J.G., Jang, J.Y., Fang, T., Ryu, J.H., Ahn, C., Kim S.J., and Yang, J., Role of human CD200 overexpression in pig-to-human xenogeneic immune response compared with human CD47 overexpression, Transplantation, 2018, vol. 102, no. 3, pp. 406—416.

    Article  Google Scholar 

  49. Anacker, C., Cattaneo, A., Musaelyan, K., Zunszain, P.A., Horowitz, M., Molteni, R, Luoni, A., Calabrese, F., Tansey, K., Gennarelli, M., Thuret, S., Price, J., Uher, R., Riva, M.A., and Pariante, C.M., Role for the kinase SGK1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 21, pp. 8708—8713.

    Article  Google Scholar 

  50. Matsumoto, Y., Noguchi, E., Imoto, Y., Nanatsue, K., Takeshita, K., Shibasaki, M., Arinami, T., and Fujieda, S., Upregulation of IL17RB during natural allergen exposure in patients with seasonal allergic rhinitis, Allergol. Int., 2011, vol. 60, no. 1, pp. 87—92.

    Article  Google Scholar 

  51. Nicol, L., Gossner, A., Watkins, C., Chianini, F., Dalziel, R., and Hopkins, J., Variations in Il-23 and Il-25 receptor gene structure, sequence and expression associated with the two disease forms of sheep paratuberculosis, Vet. Res., 2016, vol. 47, p. 27.

    Article  Google Scholar 

  52. Mukherjee, S., Shaikh, N., Khavale, S., Shinde, G., Meherji, P., Shah, N., and Maitra, A., Genetic variation in exon 17 of INSR is associated with insulin resistance and hyperandrogenemia among lean indian women with polycystic ovary syndrome, Eur. J. Endocrinol., 2009, vol. 160, no. 5, pp. 855—862.

    Article  Google Scholar 

  53. Okamoto, H., Obici, S., Accili, D., and Rossetti, L., Restoration of liver insulin signaling in INSR knockout mice fails to normalize hepatic insulin action, J. Clin. Invest., 2005, vol. 115, no. 5, pp. 1314—1322.

    Article  Google Scholar 

  54. Bomfim, G.F., Merighe, G.K.F., de Oliveira, S.A., and Negrao, J.A., Acute and chronic effects of cortisol on milk yield, the expression of key receptors, and apoptosis of mammary epithelial cells in Saanen goats, J. Dairy Sci., 2022, vol. 105, no. 1, pp. 818—830.

    Article  Google Scholar 

  55. Chaves, R.N., Duarte, A.B., Rodrigues, G.Q., Celestino, J.J., Silva, G.M., Lopes, C.A., Almeida, A.P., Donato, M.A., Peixoto, C.A., Moura, A.A., Lobo, C.H., Locatelli, Y., Mermillod, P., Campello, C.C., and Figueiredo, J.R., The effects of insulin and follicle-simulating hormone (FSH) during in vitro development of ovarian goat preantral follicles and the relative mRNA expression for insulin and FSH receptors and cytochrome P450 aromatase in cultured follicles, Biol. Reprod., 2012, vol. 87, no. 3, p. 69.

    Article  Google Scholar 

  56. Jewell, J.L., Oh, E., and Thurmond, D.C., Exocytosis mechanisms underlying insulin release and glucose uptake: conserved roles for Munc18c and Syntaxin 4, Am. J. Physiol.: Regul. Integr. Comp. Physiol., 2010, vol. 298, no. 3, pp. R517—R531.

    Google Scholar 

  57. Li, Y., Li, B., Yang, M., Han, H., Chen, T., Wei, Q., Miao, Z., Yin, L., Wang, R., Shen, J., Li, X., Xu, X., Fang, M., and Zhao, S., Genome-wide association study and fine mapping reveals candidate genes for birth weight of Yorkshire and Landrace Pigs, 2020, Front. Genet., 2020, vol. 11, p. 183.

    Article  Google Scholar 

  58. Oh, E., Spurlin, B.A., Pessin, J.E., and Thurmond, D.C., Munc18c heterozygous knockout mice display increased susceptibility for severe glucose intolerance, Diabetes, 2005, vol. 54, no. 3, pp. 638—647.

    Article  Google Scholar 

  59. Zhang, Y.L., Zhong, X., Gjoka, Z., Li, Y., Stochaj, W., Stahl, M., Kriz, R., Tobin, J.F., Erbe, D., and Suri, V., H6PDH interacts directly with 11beta-HSD1: implications for determining the directionality of glucocorticoid catalysis, Arch. Biochem. Biophys., 2009, vol. 483, no. 1, pp. 45—54.

    Article  Google Scholar 

  60. Lavery, G.G., Walker, E.A., Turan, N., Rogoff, D., Ryder, J.W., Shelton, J.M., Richardson, J.A., Falciani, F., White, P.C., Stewart, P.M., Parker, K.L., and McMillan, D.R., Deletion of hexose-6-phosphate dehydrogenase activates the unfolded protein response pathway and induces skeletal myopathy, J. Biol. Chem., 2008, vol. 283, no. 13, pp. 8453—8461.

    Article  Google Scholar 

  61. Nakashima, Y., Raines, E.W., Plump, A.S., Breslow, J.L., and Ross, R., Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse, Arterioscler. Thromb. Vasc. Biol., 1998, vol. 18, no. 5, pp. 842—851.

    Article  Google Scholar 

  62. Jiang, Q., Lee, C.Y., Mandrekar, S., Wilkinson, B., Cramer, P., Zelcer, N., Mann, K., Lamb, B., Willson, T.M., Collins, J.L., Richardson, J.C., Smith, J.D., Comery, T.A., Riddell, D., Holtzman, D.M., Tontonoz, P., and Landreth, G.E., ApoE promotes the proteolytic degradation of Abeta, Neuron, 2008, vol. 58, no. 5, pp. 681—693.

    Article  Google Scholar 

  63. Masliah, E., Mallory, M., Ge, N., Alford, M., Veinbergs, I., and Roses, A.D., Neurodegeneration in the central nervous system of ApoE-deficient mice, Exp. Neurol., 1995, vol. 136, no. 2, pp. 107—122.

    Article  Google Scholar 

  64. Faulconnier, Y., Boby, C., Coulpier, F., Lemoine, S., Martin, P., and Leroux, C., Comparative transcriptome analysis of goat (Capra hircus) adipose tissue reveals physiological regulation of body reserve recovery after the peak of lactation, Comp. Biochem. Physiol., Part D: Genomics Proteomics, 2021, vol. 41, p. 100956.

    Google Scholar 

  65. Fang, B., Ren, X., Wang, Y., Li, Z., Zhao, L., Zhang, M., Li, C., Zhang, Z., Chen, L., Li, X., Liu, J., Xiong, Q., Zhang, L., Jin, Y., Liu, X., Li, L., Wei, H., Yang, H., Li, R., and Dai, Y., Apolipoprotein E deficiency accelerates atherosclerosis development in miniature pigs, Dis. Model Mech., 2018, vol. 11, no. 10.

  66. Takahashi, Y., Itoh, F., Oohashi, T., and Miyamoto, T., Distribution of apolipoprotein E among lipoprotein fractions in the lactating cow, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2003, vol. 136, no. 4, pp. 905—912.

    Article  Google Scholar 

Download references

Funding

This work was supported by Chongqing Natural Science Foundation (cstc2021jcyj-msxmX0013, National Natural Science Foundation of China (no. 31172195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. The experiment was carried out in strict accordance with the guidelines of the International Cooperation Committee of Animal Welfare on the care and use of experimental animals.

CONSENT TO PARTICIPATE

Informed consent was obtained from all individual participants included in the study.

CONSENT TO PUBLISH

The authors affirm that human research participants provided informed consent for publication of the data in this study.

ADDITIONAL INFORMATION

Genomes (>10 × depth) of 46 Australian Boer goats (case group) were obtained from our published parallel projects (PRJNA671542).

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Yang, B., He, Y. et al. Genome-Wide Selection Signal Analysis of Australian Boer Goat by Insertion/Deletion Variants. Russ J Genet 58, 1504–1512 (2022). https://doi.org/10.1134/S1022795422120158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422120158

Keywords:

Navigation