Skip to main content
Log in

MSMEG_1963 and MSMEG_5597 Genes, but Not inhA, Modulate Mycobacterium smegmatis Resistance to Tryptanthrins

  • GENETICS OF MICROORGANISMS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The spread of drug-resistant strains of Mycobacterium tuberculosis is a major threat to the global control of tuberculosis (TB), urging the need to constantly develop new anti-TB drugs. Tryptanthrins are convenient compounds for the development of candidate anti-TB drugs due to the easy synthesis, low toxicity, and antimycobacterial activity on both drug-susceptible and drug-resistant M. tuberculosis strains. Enoyl-acyl carrier protein reductase InhA was previously predicted in silico as a possible target for tryptanthrins, while spontaneous tryptanthrin-resistant M. smegmatis mutants were found to have mutations in the MSMEG_1963, MSMEG_4427, and MSMEG_5597 genes. Using the approaches of reverse genetics, we demonstrate that mutations in the MSMEG_1963 and MSMEG_5597 genes lead to a loss of function of their encoded transcriptional repressors and lead to resistance to tryptanthrins. We show that mutations in MSMEG_1963 and MSMEG_5597 lead to overexpression of MSMEG_1964 and MSMEG_5596, respectively, which encode enzymes potentially involved in redox inactivation of tryptanthrins. We also show that InhA is not a biotarget of tryptanthrins, as its overexpression does not affect susceptibility of mycobacteria to tryptanthrins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. World Health Organization, Global Tuberculosis Report 2020, Geneva: WHO, 2020.

    Google Scholar 

  2. Hinshaw, H.C., Pyle, M.M., and Feldman, W.H., Streptomycin in tuberculosis, Am. J. Med., 1947, vol. 2, no. 5, pp. 429—435. https://doi.org/10.1016/0002-9343(47)90087-9

    Article  CAS  PubMed  Google Scholar 

  3. British Thoracic Society, A controlled trial of 6 months’ chemotherapy in pulmonary tuberculosis final report: results during the 36 months after the end of chemotherapy and beyond, Brit. J. Dis. Chest., 1984, vol. 78, pp. 330—336. https://doi.org/10.1016/0007-0971(84)90165-7

    Article  Google Scholar 

  4. Hameed, H.M.A., Islam, M.M., Chhotaray, C., et al., Molecular targets related drug resistance mechanisms in MDR-, XDR-, and TDR-Mycobacterium tuberculosis strains, Front. Cell. Infect. Microbiol., 2018, vol. 8, pp. 1588—1521. https://doi.org/10.3389/fcimb.2018.00114

    Article  CAS  Google Scholar 

  5. Islam, M.M., Hameed, H.M.A., Mugweru, J., et al., Drug resistance mechanisms and novel drug targets for tuberculosis therapy, J. Genet. Genomics, 2017, vol. 44, no. 1, pp. 21—37. https://doi.org/10.1016/j.jgg.2016.10.002

    Article  PubMed  Google Scholar 

  6. Coxon, G.D., Cooper, C.B., Gillespie, S.H., and McHugh, T.D., Strategies and challenges involved in the discovery of new chemical entities during early-stage tuberculosis drug discovery, J. Infect. Dis., 2012, vol. 205, suppl. 2, pp. S258—S264. https://doi.org/10.1093/infdis/jis191

    Article  CAS  PubMed  Google Scholar 

  7. Mitscher, L.A. and Baker, W., Tuberculosis: a search for novel therapy starting with natural products, Med. Res. Rev., 1998, vol. 18, no. 6, pp. 363—374. https://doi.org/10.1002/(sici)1098-1128(199811)18:6<363::aid-med1>3.0.co;2-i

    Article  CAS  PubMed  Google Scholar 

  8. Honda, G. and Tabata, M., Isolation of antifungal principle tryptanthrin, from Strobilanthes cusia O. Kuntze, Planta Med., 1979, vol. 36, no. 5, pp. 85—86. https://doi.org/10.1055/s-0028-1097245

    Article  CAS  PubMed  Google Scholar 

  9. Bhattacharjee, A.K., Skanchy, D.J., Jennings, B., et al., Analysis of stereoelectronic properties, mechanism of action and pharmacophore of synthetic indolo[2,1-b]quinazoline-6,12-dione derivatives in relation to antileishmanial activity using quantum chemical, cyclic voltammetry and 3-D-QSAR CATALYST procedures, Bioorgan. Med. Chem., 2002, vol. 10, no. 6, pp. 1979—1989. https://doi.org/10.1016/s0968-0896(02)00013-5

    Article  CAS  Google Scholar 

  10. Bhattacharjee, A.K., Hartell, M.G., Nichols, D.A., et al., Structure-activity relationship study of antimalarial indolo[2,1-b]quinazoline-6,12-diones (tryptanthrins): three dimensional pharmacophore modeling and identification of new antimalarial candidates, Eur. J. Med. Chem., 2004, vol. 39, no. 1, pp. 59—67. https://doi.org/10.1016/j.ejmech.2003.10.004

    Article  CAS  PubMed  Google Scholar 

  11. Bandekar, P.P., Roopnarine, K.A., Parekh, V.J., et al., Antimicrobial activity of tryptanthrins in Escherichia coli, J. Med. Chem., 2010, vol. 53, no. 9, pp. 3558—3565. https://doi.org/10.1021/jm901847f

    Article  CAS  PubMed  Google Scholar 

  12. Kataoka, M., Hirata, K., Kunikata, T., et al., Antibacterial action of tryptanthrin and kaempferol, isolated from the indigo plant (Polygonum tinctorium Lour.), against Helicobacter pylori-infected mongolian gerbils, J. Gastroenterol., 2001, vol. 36, no. 1, pp. 5—9. https://doi.org/10.1007/s005350170147

    Article  CAS  PubMed  Google Scholar 

  13. Honda, G., Tosirisuk, V., and Tabata, M., Isolation of an antidermatophytic, tryptanthrin, from indigo plants, Polygonum tinctorium and Isatis tinctoria, Planta Med., 1980, vol. 38, no. 3, pp. 275—276. https://doi.org/10.1055/s-2008-1074877

    Article  CAS  PubMed  Google Scholar 

  14. Tripathi, A., Wadia, N., Bindal, D., and Jana, T., Docking studies on novel alkaloid tryptanthrin and its analogues against enoyl-acyl carrier protein reductase (InhA) of Mycobacterium tuberculosis, Indian J. Biochem. Biophys., 2012, vol. 49, no. 6, pp. 435—441.

    CAS  PubMed  Google Scholar 

  15. Banerjee, A., Dubnau, E., Quemard, A., et al., inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis, Science, 1994, vol. 263, no. 5144, pp. 227—230.

    Article  CAS  Google Scholar 

  16. Frolova, S.G., Klimina, K.M., Kumar, R., et al., Identification of mutations conferring tryptanthrin resistance to Mycobacterium smegmatis, Antibiotics, 2021, vol. 10, no. 1, pp. 6—10. https://doi.org/10.3390/antibiotics10010006

    Article  CAS  Google Scholar 

  17. Shur, K.V., Frolova, S.G., Akimova, N.I., et al., A test system for in vitro screening antimycobacterial drug candidates for MmpS5-MmpL5 mediated resistance, Russ. J. Genet., 2021, vol. 57, no. 1, pp. 114—116. https://doi.org/10.1134/S1022795421010154

    Article  CAS  Google Scholar 

  18. Blokpoel, M.C.J., Tetracycline-inducible gene regulation in mycobacteria, Nucleic Acids Res., 2005, vol. 33, no. 2. e22. https://doi.org/10.1093/nar/gni023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goude, R. and Parish, T., Electroporation of Mycobacteria, vol. 1285 of Mycobacteria Protocols: Methods in Molecular Biology, Parish T. and Brown A., Eds., Totowa, NJ: Humana Press, 2009, vol. 465, рр. 203–215.https://doi.org/10.1007/978-1-59745-207-6_13

  20. Parish, T. and Stoker, N.G., Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement, Microbiology (Reading, England), 2000, vol. 146, part 8, pp. 1969—1975.

    Book  Google Scholar 

  21. Ye, J., Coulouris, G., Zaretskaya, I., et al., Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction, BMC Bioinf., 2012, vol. 13, no. 1, p. 134. https://doi.org/10.1186/1471-2105-13-134

    Article  CAS  Google Scholar 

  22. Hwang, J.-M., Oh, T., Kaneko, T., et al., Design, synthesis, and structure-activity relationship studies of tryptanthrins as antitubercular agents, J. Nat. Prod., 2012, vol. 76, no. 3, pp. 354—367. https://doi.org/10.1021/np3007167

    Article  CAS  Google Scholar 

  23. Li, X., Mei, H., Chen, F., et al., Transcriptome landscape of Mycobacterium smegmatis, Front. Microbiol., 2017, vol. 8, p. 2505. https://doi.org/10.3389/fmicb.2017.02505

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGEMENTS

We are grateful to D.B. Salunke (Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, India) and P. Kendrekar (Unit for Drug Discovery Research, Department of Health Sciences, Central University of Technology, South African Republic) for providing tryptanthrin compounds for the studies.

Funding

This work was supported by a grant from the President of the Russian Federation for young Russian scientists—candidates of sciences, MK-797.2020.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Maslov.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Lisenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolova, S.G., Danilenko, V.N. & Maslov, D.A. MSMEG_1963 and MSMEG_5597 Genes, but Not inhA, Modulate Mycobacterium smegmatis Resistance to Tryptanthrins. Russ J Genet 58, 1051–1058 (2022). https://doi.org/10.1134/S1022795422090083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422090083

Keywords:

Navigation