Skip to main content
Log in

Creation of the Gain-of-Function Mutation of the MITF Gene Related to Melanogenesis Using the CRISPR-Cas9 System

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Microphthalmia-associated transcription factor (MITF) is a key transcription factor of Tyrosinase, TRP-1, and TRP-2 genes expression involved in melanogenesis related to aging. The aim of this study was to investigate melanogenesis in MITF gene-mutated human melanocytes edited by CRISPR-Cas9 system. The confirmation of MITF gene mutation was verified using T7E1 assay and Sanger DNA sequencing. Moreover, the gene expression of MITF was investigated using the RT-PCR assay. In addition, Western blot analysis and immunofluorescence staining assay were performed to further validate the difference in protein expression related to melanogenesis between the mutated and normal melanocytes. The MITF gene-edited human melanocytes were created for the first time using the CRISPR-Cas9 ribonucleoprotein complex. The evidence of successful gene editing by the CRISPR-Cas9 ribonucleoprotein complex was confirmed through the identification of mismatch among the MITF gene strands using T7EI assay. Moreover, the mutation region in 75 bp away from DSB sites was analyzed through the Sanger DNA sequencing. The expression levels in both MITF gene and protein were upregulated in mutated melanocytes compared to the normal cells. The expression levels of melanogenesis proteins such as Tyrosinase, TRP-1 and TRP-2 regulated by MITF transcription factor were also remarkably increased in the mutated melanocytes. Above findings provide a clue that the upregulation of melanogenesis could induce in human melanocytes by the edition of the intron in MITF gene using CRISPR-Cas9 ribonucleoprotein complex, leading to the gain of function of MITF gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Wu, S.-S., Li, Q.-C., Yin, C.-Q., et al., Advances in CRISPR/Cas-based gene therapy in human genetic diseases, Theranostics, 2020, vol. 10, p. 4374.

    Article  CAS  Google Scholar 

  2. Korotkova, A.M., Gerasimova, S.V., Shumny, V.K., and Khlestkina, E., Crop genes modified using the CRISPR/Cas system, Russ. J. Genet., Appl. Res., 2017, vol. 7, no. 12, pp. 822—832. https://doi.org/10.1134/S2079059717050124

    Article  CAS  Google Scholar 

  3. Knott, G.J. and Doudna, J.A., CRISPR-Cas guides the future of genetic engineering, Science, 2018, vol. 361, pp. 866—869.

    Article  CAS  Google Scholar 

  4. Zhang, F., Development of CRISPR-Cas systems for genome editing and beyond, Q. Rev. Biophys., 2019, vol. 52.

  5. Smirnov, A., Yunusova, A., Lukyanchikova, V., and Battulin, N., CRISPR/Cas9, a universal tool for genomic engineering, Russ. J. Genet., Appl. Res., 2017, vol. 7, no. 4, pp. 440—458.

    CAS  Google Scholar 

  6. Wang, F., Cai, F., Shi, R., et al., Aging and age related stresses: a senescence mechanism of intervertebral disc degeneration, Osteoarthritis Cartilage, 2016, vol. 24, pp. 398—408.

    Article  CAS  Google Scholar 

  7. Fernandez-Flores, A., Saeb-Lima, M., and Cassarino, D.S., Histopathology of aging of the hair follicle, J. Cutaneous Pathol., 2019, vol. 46, pp. 508—519.

    Article  Google Scholar 

  8. Palmer, A.K., Gustafson, B., Kirkland, J.L., and Smith, U., Cellular senescence: at the nexus between ageing and diabetes, Diabetologia, 2019, pp. 1—7.

  9. Abdel-Malek, Z.A., Fueling melanocytes with ATP from keratinocytes accelerates melanin synthesis, J. Invest. Dermatol., 2019, vol. 139, pp. 1424—1426.

    Article  CAS  Google Scholar 

  10. Pillaiyar, T., Manickam, M., and Jung, S.-H., Recent development of signaling pathways inhibitors of melanogenesis, Cell. Signalling, 2017, vol. 40, pp. 99—115.

    Article  CAS  Google Scholar 

  11. Tsang, T.-F., Chan, B., Tai, W.C.-S., et al., Gynostemma pentaphyllum saponins induce melanogenesis and activate cAMP/PKA and Wnt/β-catenin signaling pathways, Phytomedicine, 2019, vol. 60, p. 153008.

    Article  CAS  Google Scholar 

  12. Schepsky, A., Bruser, K., Gunnarsson, G. J., et al., The microphthalmia-associated transcription factor Mitf interacts with β-catenin to determine target gene expression, Mol. Cell. Biol., 2006, vol. 26, pp. 8914—8927.

    Article  CAS  Google Scholar 

  13. Azam, M.S., Kwon, M., Choi, J., and Kim, H.-R., Sargaquinoic acid ameliorates hyperpigmentation through cAMP and ERK-mediated downregulation of MITF in α-MSH-stimulated B16F10 cells, Biomed. Pharmacother., 2018, vol. 104, pp. 582—589.

    Article  CAS  Google Scholar 

  14. Hemesath, T.J., Price, E.R., Takemoto, C., et al., MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes, Nature, 1998, vol. 391, pp. 298—301.

    Article  CAS  Google Scholar 

  15. Nguyen, N.T. and Fisher, D.E., MITF and UV responses in skin: from pigmentation to addiction, Pigm. Cell Melanoma Res., 2019, vol. 32, pp. 224—236.

    Article  CAS  Google Scholar 

  16. Zolghadri, S., Bahrami, A., Hassan Khan, M.T., et al., A comprehensive review on tyrosinase inhibitors, J. Enzyme Inhib. Med. Chem., 2019, vol. 34, pp. 279—309.

    Article  CAS  Google Scholar 

  17. Ryan, J., Cell cloning by serial dilution in 96 well plates protocol, Life Sci., 2008.

  18. Rio, D.C., Ares, M., Hannon, G.J., and Nilsen, T.W., Purification of RNA using TRIzol (TRI reagent), Cold Spring Harbor Prot., 2010, vol. 2010, p. pdb. prot5439.

  19. Selzer, E., Wacheck, V., Lucas, T., et al., The melanocyte-specific isoform of the microphthalmia transcription factor affects the phenotype of human melanoma, Cancer Res., 2002, vol. 62, pp. 2098—2103.

    CAS  PubMed  Google Scholar 

  20. Hartman, M.L. and Czyz, M., MITF in melanoma: mechanisms behind its expression and activity, Cell. Mol. Life Sci., 2015, vol. 72, pp. 1249—1260.

    Article  CAS  Google Scholar 

  21. Ichiyama, T., Okada, K., Campbell, I.L., et al., NF-κB activation is inhibited in human pulmonary epithelial cells transfected with α-melanocyte-stimulating hormone vector, Peptides, 2000, vol. 21, pp. 1473—1477.

    Article  CAS  Google Scholar 

  22. Su, M., Miao, F., Jiang, S., et al., Role of the p53‑TRPM1/miR‑211‑MMP9 axis in UVB‑induced human melanocyte migration and its potential in repigmentation, Int. J. Mol. Med., 2020, vol. 45, pp. 1017—1026.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim, S., Kim, D., Cho, S.W., et al., Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins, Genome Res., 2014, vol. 24, pp. 1012—1019.

    Article  CAS  Google Scholar 

  24. Roy, A., Zhai, Y., Ortiz, J., et al., Multiplexed editing of a begomovirus genome restricts escape mutant formation and disease development, PLoS One, 2019, vol. 14. e0223765

    Article  Google Scholar 

  25. Schwefel, K., Spiegler, S., Ameling, S., et al., Biallelic CCM3 mutations cause a clonogenic survival advantage and endothelial cell stiffening, J. Cell. Mol. Med., 2019, vol. 23, pp. 1771—1783.

    Article  CAS  Google Scholar 

  26. Matson, A.W., Hosny, N., Swanson, Z.A., et al., Optimizing sgRNA length to improve target specificity and efficiency for the GGTA1 gene using the CRISPR/Cas9 gene editing system, PLoS One, 2019, vol. 14. e0226107.

    Article  CAS  Google Scholar 

  27. Zhang, Y.-Q., Pei, J.-H., Shi, S.-S., et al., CRISPR/Cas9-mediated knockout of the PDEF gene inhibits migration and invasion of human gastric cancer AGS cells, Biomed. Pharmacother., 2019, vol. 111, pp. 76—85.

    Article  CAS  Google Scholar 

  28. Guo, R., Wan, Y., Xu, D., et al., Generation and evaluation of myostatin knock-out rabbits and goats using CRISPR/Cas9 system, Sci. Rep., 2016, vol. 6, pp. 1—10.

    Article  Google Scholar 

  29. Bholah, Z., Smith, M.J., Byers, H.J., et al., Intronic splicing mutations in PTCH1 cause Gorlin syndrome, Fam. Cancer, 2014, vol. 13, pp. 477—480.

    Article  CAS  Google Scholar 

  30. Grill, C., Bergsteinsdóttir, K., Ögmundsdóttir, M.H., et al., MITF mutations associated with pigment deficiency syndromes and melanoma have different effects on protein function, Hum. Mol. Genet., 2013, vol. 22, pp. 4357—4367.

    Article  CAS  Google Scholar 

  31. Ngeow, K.C., Friedrichsen, H.J., Li, L., et al., BRAF/MAPK and GSK3 signaling converges to control MITF nuclear export, Proc. Natl. Acad. Sci. U.S.A., 2018, vol. 115, pp. E8668—E8677.

    Article  CAS  Google Scholar 

  32. Pang, X., Zheng, X., Kong, X., et al., A homozygous MITF mutation leads to familial Waardenburg syndrome type 4, Am. J. Med. Genet., Part A, 2019, vol. 179, pp. 243—248.

    Article  CAS  Google Scholar 

  33. Louphrasitthiphol, P., Chauhan, J., and Goding, C.R., ABCB5 is activated by MITF and β-catenin and is associated with melanoma differentiation, Pigm. Cell Melanoma Res., 2020, vol. 33, pp. 112—118.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (no. 2017R1D1A3B06028000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sojeong Jeon or Moon-Moo Kim.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, S., Kim, MM. Creation of the Gain-of-Function Mutation of the MITF Gene Related to Melanogenesis Using the CRISPR-Cas9 System. Russ J Genet 58, 857–865 (2022). https://doi.org/10.1134/S1022795422070079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422070079

Keywords:

Navigation