Skip to main content
Log in

Molecular Genetic Study of the Causes of Nonsyndromic Sensorineural Hearing Loss in Patients from Georgia

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Pathogenic variants in the GJB2 gene are the most common reason for nonsyndromic sensorineural hearing loss. In this study, we examined Georgian patients with sensorineural hearing loss. We establish the ratio of GJB2-related deafness among patients with impaired hearing. The mutation spectrum of the GJB2 gene in Georgia is represented by the following pathogenic variants: c.35delG, c.358_360delGAG, c.‒23+1G>A, and c.551G>C. The estimated GJB2-related hearing loss carrier frequency is 2.6%. The following variants, which are common in Russian patients, were not detected in Georgian patients: STRC (c.2171_2174delTTTG), USH2A (c.11864G>A), SLC26A4 (c.1001G>T) and c.107A>C (p.His36Pro), CLIC5 (c.1121G>A). Molecular genetic diagnosis was established for 30.8% of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kenneson, A., Van Naarden Braun, K., and Boyle, C., GJB2 (connexin 26) variants and nonsyndromic sensorineural hearing loss: a HuGE review, Genet. Med., 2002, vol. 4, no. 4, pp. 258—274. https://doi.org/10.1097/00125817-200207000-00004

    Article  CAS  PubMed  Google Scholar 

  2. Kral, A. and O’Donoghue, G.M., Profound deafness in childhood, N. Engl. J. Med., 2010, vol. 363, no. 15, pp. 1438—1450. https://doi.org/10.1056/NEJMra0911225

    Article  CAS  PubMed  Google Scholar 

  3. ACMG, Genetics evaluation guidelines for the etiologic diagnosis of congenital hearing loss: genetic evaluation of congenital hearing loss expert panel: ACMG statement, Genet. Med., 2002, vol. 4, pp. 162—171.

    Article  Google Scholar 

  4. Hone, S.W. and Smith, R.J., Medical evaluation of pediatric hearing loss: laboratory, radiographic, and genetic testing, Otolaryngol. Clin. North Am., 2002, vol. 35, pp. 751—764.

    Article  Google Scholar 

  5. Bolz, H., Hereditary hearing loss and its syndromes third edition, Eur. J. Hum. Genet., 2016, vol. 24, p. 1650. https://doi.org/10.1038/ejhg.2016.67.

  6. Kumar, N.M. and Gilula, N.B., The gap junction communication channel, Cell, 1996, vol. 84, no. 3, pp. 381—388. https://doi.org/10.1016/s0092-8674(00)81282-9

    Article  CAS  PubMed  Google Scholar 

  7. Söhl, G. and Willecke, K., Gap junctions and the connexin protein family, Cardiovasc. Res., 2004, vol. 62, no. 2, pp. 228—232. https://doi.org/10.1016/j.cardiores.2003.11.013

    Article  CAS  PubMed  Google Scholar 

  8. Lee, S.W., Tomasetto, C., Paul, D., et al., Transcriptional downregulation of gap-junction proteins blocks junctional communication in human mammary tumor cell lines, J. Cell Biol., 1992, vol. 118, pp. 1213—1221.

    Article  CAS  Google Scholar 

  9. Green, G.E., Scott, D.A., McDonald, J.M., et al., Carrier rates in the midwestern United States for GJB2 mutation causing inherited deafness, JAMA, 1999, vol. 28, pp. 2211—2216.

    Article  Google Scholar 

  10. Sobe, T., Vreugde, S., Shahin, H., et al., The prevalence and expression of inherited connexin 26 mutations associated with nonsyndromic hearing loss in the Israeli population, Hum. Genet., 2000, vol. 106, pp. 50—57.

    Article  CAS  Google Scholar 

  11. Bliznetz, E.A., Galkina, V.A., Matyushchenko, G.N., et al., Changes in the connexin 26 gene (GJB2) in Russian patients with hearing loss: results of long-term molecular diagnostics of hereditary nonsyndromic hearing loss, Russ. J. Genet., 2012, vol. 48, no. 1, pp. 101—112. https://doi.org/10.1134/S1022795412010036

    Article  CAS  Google Scholar 

  12. Bliznetz, E.A., Martsul, D.N., Khorov, O.G., et al., Spectrum of the GJB2 mutations in Belarussian patients with hearing loss: findings of pilot genetic screening of hearing impairment in newborns, Russ. J. Genet., 2014, vol. 50, no. 2, pp. 191—197. https://doi.org/10.1134/S1022795414020033

    Article  CAS  Google Scholar 

  13. Dzhemileva, L.U., Barashkov, N.A., Posukh, O.L., et al., Analysis of heterozygous carriage of 35delG, 235delC, and 167delT mutations in GJB2 gene among populations of Eurasia, Med. Genet., 2009, vol. 8, no. 8, pp. 20—28.

    CAS  Google Scholar 

  14. Morell, R.J., Kim, H.J., Hood, L.J., et al., Mutations in the connexin 26 gene (GJB2) among Ashkenazi Jews with nonsyndromic recessive deafness, N. Engl. J. Med., 1998, vol. 339, pp. 1500—1505.

    Article  CAS  Google Scholar 

  15. Cryns, K., Orzan, E., Murgia, A., et al., A genotype—phenotype correlation for GJB2 (connexin 26) deafness, Med. Genet., 2004, vol. 41, pp. 147—154.

    Article  CAS  Google Scholar 

  16. Chan, D.K. and Chang, K.W., GJB2-associated hearing loss: systematic review of worldwide prevalence, genotype, and auditory phenotype, Laryngoscope, 2014, vol. 124, no. 2, pp. E34—E53. https://doi.org/10.1002/lary.24332

    Article  PubMed  Google Scholar 

  17. Barashkov, N.A., Dzhemileva, L.U., Fedorova, S.A., et al., Connexin 26 gene (GJB2) mutations in patients with hereditary non-syndromic sensorineural loss of hearing in the Republic of Sakha (Yakutia), Vestn. Otolaringol., 2008, no. 5, pp. 23—29.

  18. Bliznetz, E.A., Sarkisyan, T.F., Manukyan, T.A., et al., GJB2 caused hearing loss in Armenians, Med. Genet., 2012, vol. 11, no. 5 (119), pp. 23—28.

  19. Bliznetz, E.A., Lalayants, M.R., Markova, T.G., et al., Update of the GJB2/DFNB1 mutation spectrum in Russia: a founder Ingush mutation del (GJB2-D13S175) is the most frequent among other large deletions, J. Hum. Genet., 2017, vol. 62, no. 8, pp. 789—795. https://doi.org/10.1038/jhg.2017.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, X.Z., Yuan, Y., Yan, D., et al., Digenic inheritance of non-syndromic deafness caused by mutations at the gap junction proteins Cx26 and Cx31, Hum. Genet., 2009, vol. 125, no. 1, pp. 53—62. https://doi.org/10.1007/s00439-008-0602-9

    Article  CAS  PubMed  Google Scholar 

  21. Yu, X., Lin, Y., Xu, J., et al., Molecular epidemiology of Chinese Han deaf patients with bi-allelic and mono-allelic GJB2 mutations, Orphanet. J. Rare Dis., 2020, vol. 28, no. 15, no. 1, p. 29. https://doi.org/10.1186/s13023-020-1311-2

  22. Baux, D., Vaché, C., Blanchet, C., et al., Combined genetic approaches yield a 48% diagnostic rate in a large cohort of French hearing-impaired patients, Sci. Rep., 2017, vol. 1, no. 7(1), p. 16783. https://doi.org/10.1038/s41598-017-16846-9

  23. Najmabadi, H., Nishimura, C., Kahrizi, K., et al., GJB2 mutations: passage through Iran, Am. J. Med. Genet., 2005, vol. 133A, no. 2, pp. 132—137. https://doi.org/10.1002/ajmg.a.30576

    Article  PubMed  Google Scholar 

  24. Murgia, A., Orzan, E., Polli, R., et al., Cx26 deafness: mutation analysis and clinical variability, J. Med. Genet., 1999, vol. 36, no. 11, pp. 829—832.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mahdieh, N., Nishimura, C., Ali-Madadi, K., et al., The frequency of GJB2 mutations and the Delta (GJB6-D13S1830) deletion as a cause of autosomal recessive non-syndromic deafness in the Kurdish population, Clin. Genet., 2004, vol. 65, no. 6, pp. 506—508.https://doi.org/10.1111/j.1399-0004.2004.00262.x

    Article  CAS  PubMed  Google Scholar 

  26. Yilmaz, A., Menevse, S., Bayazit, Y., et al., Two novel missense mutations in the connexin 26 gene in Turkish patients with nonsyndromic hearing loss, Biochem. Genet., 2010, vol. 48, nos. 3—4, pp. 248—256. https://doi.org/10.1007/s10528-009-9314-7

    Article  CAS  PubMed  Google Scholar 

  27. Snoeckx, R.L., Huygen, P.L., Feldmann, D., et al., GJB2 mutations and degree of hearing loss: a multicenter study, Am. J. Hum. Genet., 2005, vol. 77, no. 6, pp. 945—957. https://doi.org/10.1086/497996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Denoyelle, F., Marlin, S., Weil, D., et al., Clinical features of the prevalent form of childhood deafness, DFNB1, due to a connexin-26 gene defect: implications for genetic counselling, Lancet, 1999, vol. 17, no. 353, no. 9161, pp. 1298—1303. https://doi.org/10.1016/S0140-6736(98)11071-1

  29. Bonyadi, M., Fotouhi, N., and Esmaeili, M., Prevalence of IVS1+1G>A mutation among Iranian Azeri Turkish patients with autosomal recessive non-syndromic hearing loss (ARNSHL), Int. J. Pediatr. Otorhinolaryngol., 2011, vol. 75, no. 12, pp. 1612—1615. https://doi.org/10.1016/j.ijporl.2011.09.024

    Article  PubMed  Google Scholar 

  30. Seeman, P. and Sakmaryová, I., High prevalence of the IVS1+1G to A/GJB2 mutation among Czech hearing impaired patients with monoallelic mutation in the coding region of GJB2, Clin. Genet., 2006, vol. 69, no. 5, pp. 410—413. https://doi.org/10.1111/j.1399-0004.2006.00602.x

    Article  CAS  PubMed  Google Scholar 

  31. Barashkov, N.A., Dzhemileva, L.U., Fedorova, S.A., et al., Autosomal recessive deafness 1A (DFNB1A) in Yakut population isolate in Eastern Siberia: extensive accumulation of the splice site mutation IVS1+1G>A in GJB2 gene as a result of founder effect, J. Hum. Genet., 2011, vol. 56, no. 9, pp. 631—619. https://doi.org/10.1038/jhg.2011.72

    Article  CAS  PubMed  Google Scholar 

  32. Denoyelle, F., Weil, D., Maw, M.A., et al., Prelingual deafness: high prevalence of a 30delG mutation in the connexin 26 gene, Hum. Mol. Genet., 1997, vol. 6, no. 12, pp. 2173—2177. https://doi.org/10.1093/hmg/6.12.2173

  33. Pfenniger, A., Wohlwend, A., and Kwak, B.R., Mutations in connexin genes and disease, Eur. J. Clin. Invest., 2011, vol. 41, no. 1, pp. 103—116. https://doi.org/10.1111/j.1365-2362.2010.02378.x

    Article  CAS  PubMed  Google Scholar 

  34. Marková, S.P., Brožková, D.Š., Laššuthová, P., et al., STRC gene mutations, mainly large deletions, are a very important cause of early-onset hereditary hearing loss in the Czech population, Genet. Test. Mol. Biomarkers, 2018, vol. 22, no. 2, pp. 127—134. https://doi.org/10.1089/gtmb.2017.0155

    Article  CAS  PubMed  Google Scholar 

  35. https://hereditaryhearingloss.org/.

Download references

Funding

This work was carried out within the framework of the state task of the Ministry of Education and Science of Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Stepanova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in a study involving people comply with the ethical standards of the institutional and/or national committee for research ethics and the 1964 Helsinki Declaration and its subsequent changes or comparable ethical standards.

Informed voluntary consent was obtained from each of the participants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanova, A.A., Ismagilova, O.R., Galeeva, N.M. et al. Molecular Genetic Study of the Causes of Nonsyndromic Sensorineural Hearing Loss in Patients from Georgia. Russ J Genet 58, 585–592 (2022). https://doi.org/10.1134/S1022795422050106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422050106

Keywords:

Navigation