Skip to main content
Log in

Genetic Risk Factors for Inhibitor Development in Hemophilia A

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The review is devoted to the description of possible mechanisms of inhibitor development in hemophilia A. Most of the focus is on the genetic factors, but attention is also paid to factors of different nature, as well as their combinations that can provoke the synthesis of inhibitory antibodies. Among the genetic determinants, special attention is paid to the type of factor VIII gene mutations, as well as functional SNPs in the protein-coding genes that regulate the immune system, which were studied by different research groups using both classical and the most modern molecular genetic methods. The type of F8 gene mutations remains the most unbiassed genetic risk factor for the inhibitor development; moreover, studies aimed at the analysis of combinations of the F8 missense mutations, causing the synthesis of antibodies, with HLA class II alleles are of particular interest. For other genetic markers, further studies are required to verify their putative role in the development of the inhibitory form of hemophilia A. Among the nongenetic factors, the inhibitor development largely depends on the type of FVIII product and the intensity of therapy. However, despite numerous studies, hemophilia inhibitors remain the most difficult treatment option of this disease. In solving this problem, the construction of algorithms for predicting the risk of inhibitor development using the integration analysis that takes into account multiple factors of both genetic and other nature and their interaction can help.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Garagiola, I., Palla, R., and Peyvandi, F., Risk factors for inhibitor development in severe hemophilia A, Thromb. Haemostasis, 2018, vol. 168, pp. 20—27. https://doi.org/10.1016/j.thromres.2018.05.027

    Article  CAS  Google Scholar 

  2. Astermark, J., Donfield, S.M., Gomperts, E.D., et al., The polygenic nature of inhibitors in hemophilia A: results from the Hemophilia Inhibitor Genetics Study (HIGS) combined cohort, Blood, 2013, vol. 121, no. 8, pp. 1446—1454. https://doi.org/10.1182/blood-2012-06-434803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goodeve, A.C., Williams, I., Bray, G.L., and Peake, I.R., Relationship between factor VIII mutation type and inhibitor development in a cohort of previously untreated patients treated with recombinant factor VIII (RecombinateTM), Thromb. Haemostasis, 2000, vol. 83, no. 6, pp. 844—848. https://doi.org/10.1055/s-0037-1613931

    Article  CAS  Google Scholar 

  4. Peyvandi, F. and Garagiola, I., Product type and other environmental risk factors for inhibitor development in severe hemophilia A, Res. Pract. Thromb. Haemostasis, 2018, vol. 2, no. 2, pp. 220—227. https://doi.org/10.1002/rth2.12094

    Article  CAS  Google Scholar 

  5. Whelan, S.F.J., Hofbauer, C.J., Horling, F.M., et al., Distinct characteristics of antibody responses against factor VIII in healthy individuals and in different cohorts of hemophilia A patients, Blood, 2013, vol. 121, no. 6, pp. 1039—1048. https://doi.org/10.1182/blood-2012-07-444877

    Article  CAS  PubMed  Google Scholar 

  6. Kahle, J., Orlowski, A., Stichel, D., et al., Epitope mapping via selection of anti-FVIII antibody-specific phage-presented peptide ligands that mimic the antibody binding sites, Thromb. Haemostasis, 2015, vol. 113, no. 2, pp. 396—405. https://doi.org/10.1160/TH14-01-0101

    Article  Google Scholar 

  7. Hofbauer, C.J., Whelan, S.F.J., Hirschler, M., et al., Affinity of FVIII-specific antibodies reveals major differences between neutralizing and nonneutralizing antibodies in humans, Blood, 2015, vol. 125, no. 7, pp. 1180—1188. https://doi.org/10.1182/blood-2014-09-598268

    Article  CAS  PubMed  Google Scholar 

  8. Hofbauer, C.J., Kepa, S., Schemper, M., et al., FVIII-binding IgG modulates FVIII half-life in patients with severe and moderate hemophilia A without inhibitors, Blood, 2016, vol. 128, no. 2, pp. 293—296. https://doi.org/10.1182/blood-2015-10-675512

    Article  CAS  PubMed  Google Scholar 

  9. Lewis, K.B., Hughes, R.J., Epstein, M.S., et al., Phenotypes of allo- and autoimmune antibody responses to FVIII characterized by surface plasmon resonance, PLoS One, 2013, vol. 8, no. 5. e61120. https://doi.org/10.1371/journal.pone.0061120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Astermark, J., Why do inhibitors develop? Principles of and factors influencing the risk for inhibitor development in haemophilia, Haemophilia, 2006, vol. 12, no. S3, pp. 52—60. https://doi.org/10.1111/j.1365-2516.2006.01261.x

    Article  CAS  PubMed  Google Scholar 

  11. White, G.C., Kempton, C.L., Grimsley, A., et al., Cellular immune responses in hemophilia: why do inhibitors develop in some, but not all hemophiliacs?, J. Thromb. Haemostasis, 2005, vol. 3, no. 8, pp. 1676—1681. https://doi.org/10.1111/j.1538-7836.2005.01375.x

    Article  CAS  Google Scholar 

  12. Astermark, J., FVIII inhibitors: pathogenesis and avoidance, Blood, 2015, vol. 125, no. 13, pp. 2045—2051. https://doi.org/10.1182/blood-2014-08-535328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Judge, T.A., Tang, A., and Turka, L.A., Immunosuppression through blockade of CD28:B7-mediated costimulatory signals, Immunol. Res., 1996, vol. 15, pp. 38—49. https://doi.org/10.1007/BF02918283

    Article  CAS  PubMed  Google Scholar 

  14. Qian, J., Collins, M., Sharpe, A.H., and Hoyer, L.W., Prevention and treatment of factor VIII inhibitors in murine hemophilia A, Blood, 2000, vol. 95, no. 4, pp. 1324—1329. https://doi.org/10.1182/blood.v95.4.1324.004k25_1324_1329

    Article  CAS  PubMed  Google Scholar 

  15. Hausl, C., Ahmad, R.U., Schwarz, H.P., et al., Preventing restimulation of memory B cells in hemophilia A: a potential new strategy for the treatment of antibody-dependent immune disorders, Blood, 2004, vol. 104, no. 1, pp. 115—122. https://doi.org/10.1182/blood-2003-07-2456

    Article  CAS  PubMed  Google Scholar 

  16. Lövgren, K.M., Søndergaard, H., Skov, S., and Wiinberg, B., Non-genetic risk factors in haemophilia A inhibitor management—the danger theory and the use of animal models, Haemophilia, 2016, vol. 22, no. 5, pp. 657—666. https://doi.org/10.1111/hae.13075

    Article  CAS  PubMed  Google Scholar 

  17. Pradeu, T. and Cooper, E.L., The danger theory: 20 years later, Front. Immunol., 2012, vol. 3, p. 287. https://doi.org/10.3389/fimmu.2012.00287

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dasgupta, S., Navarrete, A.M., Bayry, J., et al., A role for exposed mannosylations in presentation of human therapeutic self-proteins to CD4+ T lymphocytes, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 21, pp. 8965—8970. https://doi.org/10.1073/pnas.0702120104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dasgupta, S., Repessé, Y., Bayry, J., et al., VWF protects FVIII from endocytosis by dendritic cells and subsequent presentation to immune effectors, Blood, 2007, vol. 109, no. 2, pp. 610—612. https://doi.org/10.1182/blood-2006-05-022756

    Article  CAS  PubMed  Google Scholar 

  20. Herczenik, E., Van Haren, S.D., Wroblewska, A., et al., Uptake of blood coagulation factor VIII by dendritic cells is mediated via its C1 domain, J. Allergy Clin. Immunol., 2012, vol. 129, no. 2, pp. 501—509. e5. https://doi.org/10.1016/j.jaci.2011.08.029

  21. Delignat, S., Repessé, Y., Navarrete, A.M., et al., Immunoprotective effect of von Willebrand factor towards therapeutic factor VIII in experimental haemophilia A, Haemophilia, 2012, vol. 18, no. 2, pp. 248—254. https://doi.org/10.1111/j.1365-2516.2011.02679.x

    Article  CAS  PubMed  Google Scholar 

  22. Lacroix-Desmazes, S., Bayry, J., Misra, N., et al., The prevalence of proteolytic antibodies against factor VIII in hemophilia A, N. Engl. J. Med., 2002, vol. 346, no. 9, pp. 662—667. https://doi.org/10.1056/NEJMoa011979

    Article  CAS  PubMed  Google Scholar 

  23. Tabriznia-Tabrizi, S., Gholampour, M., and Mansouritorghabeh, H., A close insight to factor VIII inhibitor in the congenital hemophilia A, Expert Rev. Hematol., 2016, vol. 9, no. 9, pp. 903—913. https://doi.org/10.1080/17474086.2016.1208554

    Article  CAS  PubMed  Google Scholar 

  24. Astermark, J., Berntorp, E., White, G.C., et al., The Malmö International Brother Study (MIBS): further support for genetic predisposition to inhibitor development, Haemophilia, 2001, vol. 7, pp. 267—272. https://doi.org/10.1046/j.1365-2516.2001.00510.x

    Article  CAS  PubMed  Google Scholar 

  25. Santagostino, E., Mancuso, M.E., Rocino, A., et al., Environmental risk factors for inhibitor development in children with haemophilia A: a case—control study, Br. J. Haematol., 2005, vol. 130, no. 3, pp. 422—427. https://doi.org/10.1111/j.1365-2141.2005.05605.x

    Article  CAS  PubMed  Google Scholar 

  26. Goudemand, J., Rothschild, C., Laurian, Y., and Calvez, T., Influence of the type of factor VIII concentrates on the incidence of factor VIII inhibitors in previously untreated patients with severe hemophilia A, Blood, 2006, vol. 107, no. 9, pp. 46—51. https://doi.org/10.1182/blood-2005-04-1371

    Article  CAS  PubMed  Google Scholar 

  27. Ragni, M.V., Ojeifo, O., Feng, J., et al., Risk factors for inhibitor formation in hemophilia: a prevalent case-control study, Haemophilia, 2009, vol. 15, no. 5, pp. 1074—1082. https://doi.org/10.1111/j.1365-2516.2009.02058.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Viel, K.R., Ameri, A., Abshire, T.C., et al., Inhibitors of factor VIII in black patients with hemophilia, N. Engl. J. Med., 2009, vol. 360, no. 16, pp. 1618—1627. https://doi.org/10.1056/NEJMoa075760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carpenter, S.L., Michael Soucie, J., Sterner, S., and Presley, R., Increased prevalence of inhibitors in Hispanic patients with severe haemophilia A enrolled in the Universal Data Collection database, Haemophilia, 2012, vol. 18, no. 3, pp. 260—265. https://doi.org/10.1111/j.1365-2516.2011.02739.x

    Article  Google Scholar 

  30. Gunasekera, D., Ettinger, R.A., Fletcher, S.N., et al., Factor VIII gene variants and inhibitor risk in African American hemophilia A patients, Blood, 2015, vol. 126, no. 7, pp. 895—904. https://doi.org/10.1182/blood-2014-09-599365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bardi, E. and Astermark, J., Genetic risk factors for inhibitors in haemophilia A, Eur. J. Haematol., 2015, vol. 94, no. S77, pp. 7—10. https://doi.org/10.1111/ejh.12495

    Article  CAS  PubMed  Google Scholar 

  32. Lakich, D., Kazazian, H.H., Antonarakis, S.E., and Gitschier, J., Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A, Nat. Genet., 1993, vol. 5, no. 3, pp. 236—241. https://doi.org/10.1038/ng1193-236

    Article  CAS  PubMed  Google Scholar 

  33. Bagnall, R.D., Waseem, N., Green, P.M., and Giannelli, F., Recurrent inversion breaking intron 1 of the factor VIII gene is a frequent cause of severe hemophilia A, Blood, 2002, vol. 99, no. 1, pp. 168—174. https://doi.org/10.1182/blood.V99.1.168

    Article  CAS  PubMed  Google Scholar 

  34. Oldenburg, J. and Pavlova, A., Genetic risk factors for inhibitors to factors VIII and IX, Haemophilia, 2006, vol. 12, no. S6, pp. 15—22. https://doi.org/10.1111/j.1365-2516.2006.01361.x

    Article  CAS  PubMed  Google Scholar 

  35. Eckhardt, C.L., Van Velzen, A.S., Peters, M., et al., Factor VIII gene (F8) mutation and risk of inhibitor development in nonsevere hemophilia A, Blood, 2013, vol. 122, no. 11, pp. 1954—1962. https://doi.org/10.1182/blood-2013-02-483263

    Article  CAS  PubMed  Google Scholar 

  36. Schwaab, R., Pavlova, A., Albert, T., et al., Significance of F8 missense mutations with respect to inhibitor formation, Thromb. Haemostasis, 2013, vol. 109, no. 3, pp. 464—470. https://doi.org/10.1160/TH12-07-0521

    Article  CAS  Google Scholar 

  37. Schwaab, R., Brackmann, H.H., Meyer, C., et al., Haemophilia A: mutation type determines risk of inhibitor formation, Thromb. Haemostasis, 1995, vol. 74, no. 6, pp. 1402—1406. https://doi.org/10.1055/s-0038-1649954

    Article  CAS  Google Scholar 

  38. Oldenburg, J., El-Maarri, O., and Schwaab, R., Inhibitor development in correlation to factor VIII genotypes, Haemophilia, 2002, vol. 8, no. S2, pp. 23—29. https://doi.org/10.1046/j.1351-8216.2001.00134.x

    Article  CAS  PubMed  Google Scholar 

  39. Gouw, S.C., Van Den Berg, H.M., Oldenburg, J., et al., F8 gene mutation type and inhibitor development in patients with severe hemophilia A: systematic review and meta-analysis, Blood, 2012, vol. 119, no. 12, pp. 2922—2934. https://doi.org/10.1182/blood-2011-09-379453

    Article  CAS  PubMed  Google Scholar 

  40. Sauna, Z.E., Lozier, J.N., Kasper, C.K., et al., The intron-22-inverted F8 locus permits factor VIII synthesis: explanation for low inhibitor risk and a role for pharmacogenomics, Blood, 2015, vol. 125, no. 2, pp. 223—228. https://doi.org/10.1182/blood-2013-12-530113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Spena, S., Garagiola, I., Cannavò, A., et al., Prediction of factor VIII inhibitor development in the SIPPET cohort by mutational analysis and factor VIII antigen measurement, J. Thromb. Haemostasis, 2018, vol. 16, no. 4, pp. 778—790. https://doi.org/10.1111/jth.13961

    Article  CAS  Google Scholar 

  42. Astermark, J., Oldenburg, J., Pavlova, A., et al., Polymorphisms in the IL10 but not in the IL1beta and IL4 genes are associated with inhibitor development in patients with hemophilia A, Blood, 2006, vol. 107, no. 8, pp. 3167—3173. https://doi.org/10.1182/blood-2005-09-3918

    Article  CAS  PubMed  Google Scholar 

  43. Astermark, J., Oldenburg, J., Carlson, J., et al., Polymorphisms in the TNFA gene and the risk of inhibitor development in patients with hemophilia A, Blood, 2006, vol. 108, no. 12, pp. 3739—3746. https://doi.org/10.1182/blood-2006-05-024711

    Article  CAS  PubMed  Google Scholar 

  44. Astermark, J., Wang, X., Oldenburg, J., et al., Polymorphisms in the CTLA-4 gene and inhibitor development in patients with severe hemophilia A, J. Thromb. Haemostasis, 2007, vol. 5, pp. 263—265. https://doi.org/10.1111/j.1538-7836.2007.02290.x

    Article  CAS  Google Scholar 

  45. Lozier, J., Rosenberg, P.S., Goedert, J.J., and Menashe, I., A case-control study reveals immunoregulatory gene haplotypes that influence inhibitor risk in severe hemophilia A, Haemophilia, 2011, vol. 17, no. 4, pp. 641—649. https://doi.org/10.1111/j.1365-2516.2010.02473.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pavlova, A., Delev, D., Lacroix-Desmazes, S., et al., Impact of polymorphisms of the major histocompatibility complex class II, interleukin-10, tumor necrosis factor-α and cytotoxic T-lymphocyte antigen-4 genes on inhibitor development in severe hemophilia A, J. Thromb. Haemostasis, 2009, vol. 7, no. 12, pp. 2006—2015. https://doi.org/10.1111/j.1538-7836.2009.03636.x

    Article  CAS  Google Scholar 

  47. Goodeve, A.C., Pavlova, A., and Oldenburg, J., Genomics of bleeding disorders, Haemophilia, 2014, vol. 20, no. S4, pp. 50—53. https://doi.org/10.1111/hae.12424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pergantou, H., Varela, I., Moraloglou, O., et al., Impact of HLA alleles and cytokine polymorphisms on inhibitors development in children with severe haemophilia A, Haemophilia, 2013, vol. 19, no. 5, pp. 706—710. https://doi.org/10.1111/hae.12168

    Article  CAS  PubMed  Google Scholar 

  49. Kim, H.Y., Cho, J.H., Kim, H.J., et al., Ethnicity-specific impact of HLA I/II genotypes on the risk of inhibitor development: data from Korean patients with severe hemophilia A, Ann. Hematol., 2018, vol. 97, no. 9, pp. 1695—1700. https://doi.org/10.1007/s00277-018-3358-x

    Article  CAS  PubMed  Google Scholar 

  50. De Barros, M.F., Herrero, J.C.M., Sell, A.M., et al., Influence of class I and II HLA alleles on inhibitor development in severe haemophilia A patients from the south of Brazil, Haemophilia, 2012, vol. 18, no. 3, pp. 236—240. https://doi.org/10.1111/j.1365-2516.2011.02604.x

    Article  CAS  Google Scholar 

  51. David, S., Nair, S.C., Singh, G.S., et al., Prevalence of FVIII inhibitors in severe haemophilia A patients: effect of treatment and genetic factors in an Indian population, Haemophilia, 2019, vol. 25, no. 1, pp. 67—74. https://doi.org/10.1111/hae.13633

    Article  CAS  PubMed  Google Scholar 

  52. Pandey, G.S., Yanover, C., Howard, T.E., and Sauna, Z.E., Polymorphisms in the F8 gene and MHC-II variants as risk factors for the development of inhibitory anti-factor VIII antibodies during the treatment of hemophilia A: a computational assessment, PLoS Comput. Biol., 2013, vol. 9, no. 5. e1003066. https://doi.org/10.1371/journal.pcbi.1003066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pashov, A.D., Calvez, T., Gilardin, L., et al., In silico calculated affinity of FVIII-derived peptides for HLA class II alleles predicts inhibitor development in haemophilia A patients with missense mutations in the F8 gene, Haemophilia, 2014, vol. 20, no. 2, pp. 176—184. https://doi.org/10.1111/hae.12276

    Article  CAS  PubMed  Google Scholar 

  54. Shepherd, A.J., Skelton, S., Sansom, C.E., et al., A large-scale computational study of inhibitor risk in non-severe haemophilia A, Br. J. Haematol., 2015, vol. 168, no. 3, pp. 413—420. https://doi.org/10.1111/bjh.13131

    Article  CAS  PubMed  Google Scholar 

  55. Kempton, C.L. and Payne, A.B., HLA-DRB1-factor VIII binding is a risk factor for inhibitor development in nonsevere hemophilia: a case-control study, Blood Adv., 2018, vol. 2, no. 14, pp. 1750—1755. https://doi.org/10.1182/bloodadvances.2018019323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zheng, C., Huang, D., Liu, L., et al., Interleukin-10 gene promoter polymorphisms in multiple myeloma, Int. J. Cancer, 2001, vol. 95, pp. 184—188. https://doi.org/10.1002/1097-0215(20010520)95:3<184::aid-ijc1031>3.0.co;2-v

    Article  CAS  PubMed  Google Scholar 

  57. Huang, D., Zhou, Y., Xia, S., et al., Markers in the promoter region of interleukin-10 (IL-10) gene in myasthenia gravis: implications of diverse effects of IL-10 in the pathogenesis of the disease, J. Neuroimmunol., 1999, vol. 94, pp. 82—87. https://doi.org/10.1016/S0165-5728(98)00228-8

    Article  CAS  PubMed  Google Scholar 

  58. Pinto, P., Ghosh, K., and Shetty, S., Immune regulatory gene polymorphisms as predisposing risk factors for the development of factor VIII inhibitors in Indian severe haemophilia A patients, Haemophilia, 2012, vol. 18, no. 5, pp. 794—797. https://doi.org/10.1111/j.1365-2516.2012.02845.x

    Article  CAS  PubMed  Google Scholar 

  59. Ulrich-Merzenich, G., Hausen, A., Zeitler, H., et al., The role of variant alleles of the mannose-binding lectin in the inhibitor development in severe hemophilia A, Thromb. Res., 2019, vol. 179, pp. 140—146. https://doi.org/10.1016/j.thromres.2019.05.005

    Article  CAS  PubMed  Google Scholar 

  60. Repessé, Y., Peyron, I., Dimitrov, J.D., et al., Development of inhibitory antibodies to therapeutic factor VIII in severe hemophilia A is associated with microsatellite polymorphisms in the HMOX1 promoter, Haematologica, 2013, vol. 98, no. 10, pp. 1650—1655. https://doi.org/10.3324/haematol.2013.084665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Eckhardt, C.L., Astermark, J., Nagelkerke, S.Q., et al., The Fc gamma receptor IIa R131H polymorphism is associated with inhibitor development in severe hemophilia A, J. Thromb. Haemostasis, 2014, vol. 12, no. 8, pp. 1294—1301. https://doi.org/10.1111/jth.12631

    Article  CAS  Google Scholar 

  62. Bachelet, D., Albert, T., Mbogning, C., et al., Risk stratification integrating genetic data for factor VIII inhibitor development in patients with severe hemophilia A, PLoS One, 2019, vol. 14, no. 6. e0218258. https://doi.org/10.1371/journal.pone.0218258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Naderi, N., Yousefi, H., Mollazadeh, S., et al., Inflammatory and immune response genes: a genetic analysis of inhibitor development in Iranian hemophilia A patients, Pediatr. Hematol. Oncol., 2019, vol. 36, no. 1, pp. 28—39. https://doi.org/10.1080/08880018.2019.1585503

    Article  CAS  PubMed  Google Scholar 

  64. Gorski, M.M., Blighe, K., Lotta, L.A., et al., Whole-exome sequencing to identify genetic risk variants underlying inhibitor development in severe hemophilia A patients, Blood, 2016, vol. 127, no. 23, pp. 2924—2933. https://doi.org/10.1182/blood-2015-12-685735

    Article  CAS  PubMed  Google Scholar 

  65. Astermark, J., Altisent, C., Batorova, A., et al., Non-genetic risk factors and the development of inhibitors in haemophilia: a comprehensive review and consensus report, Haemophilia, 2010, vol. 16, no. 5, pp. 747—766. https://doi.org/10.1111/j.1365-2516.2010.02231.x

    Article  CAS  PubMed  Google Scholar 

  66. ter Avest, P.C., Fischer, K., Mancuso, M.E., et al., Risk stratification for inhibitor development at first treatment for severe hemophilia A: a tool for clinical practice, J. Thromb. Haemostasis, 2008, vol. 6, pp. 2048—2054. https://doi.org/10.1111/j.1538-7836.2008.03187.x

    Article  CAS  Google Scholar 

  67. Gouw, S.C., van der Bom, J.G., and Berg, H.M., Treatment-related risk factors of inhibitor development in previously untreated patients with hemophilia A: the CANAL cohort study, Blood, 2007, vol. 109, no. 11, pp. 4648—4654. https://doi.org/10.1182/blood-2006-11-056291

    Article  CAS  PubMed  Google Scholar 

  68. Chalmers, E.A., Brown, S.A., Keeling, D., et al., Early factor VIII exposure and subsequent inhibitor development in children with severe haemophilia A, Haemophilia, 2007, vol. 13, no. 2, pp. 149—155. https://doi.org/10.1111/j.1365-2516.2006.01418.x

    Article  CAS  PubMed  Google Scholar 

  69. Ragni, M.V., FVIII, CD4, and liaisons dangereuses, Blood, 2011, vol. 117, no. 23, pp. 6060—6061. https://doi.org/10.1182/blood-2011-04-348458

    Article  CAS  PubMed  Google Scholar 

  70. Hashemi, S.M., Fischer, K., Moons, K.G.M., and Berg, H.M., Improved prediction of inhibitor development in previously untreated patients with severe haemophilia A, Haemophilia, 2015, vol. 21, no. 2, pp. 227—233. https://doi.org/10.1111/hae.12566

    Article  CAS  PubMed  Google Scholar 

  71. Henrard, S., Speybroeck, N., and Hermans, C., Classification and regression tree analysis vs. multivariable linear and logistic regression methods as statistical tools for studying haemophilia, Haemophilia, 2015, vol. 21, no. 6, pp. 715—722. https://doi.org/10.1111/hae.12778

    Article  CAS  PubMed  Google Scholar 

  72. Franchini, M., Coppola, A., Mengoli, C., et al., Blood group O protects against inhibitor development in severe hemophilia A patients, Semin. Thromb. Haemostasis, 2017, vol. 43, no. 1, pp. 69—74. https://doi.org/10.1055/s-0036-1592166

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Surin.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by N. Maleeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pshenichnikova, O.S., Surin, V.L. Genetic Risk Factors for Inhibitor Development in Hemophilia A. Russ J Genet 57, 867–877 (2021). https://doi.org/10.1134/S1022795421080111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795421080111

Keywords:

Navigation