Skip to main content
Log in

Variability of Mitochondrial DNA Control Region and Phylogeography of Russet Ground Squirrel (Spermophilus major, Sciuridae, Rodentia)

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Russet ground squirrel (Spermophilus major) is a widespread species with an extended range, partly separated by the Ural Ridge into eastern and western parts. Previously, a hybridization of the russet ground squirrel in contact areas with five other Spermophilus species, accompanied by a wide introgression of their mitochondrial genomes, was found. In the present work, a comparative analysis of the variability of the mtDNA control region of S. major was for the first time carried out throughout the range of the species (without taking into account introgressed haplotypes). It was demonstrated that species-specific haplotypes of S. major are distributed in all parts of its modern area and are characterized by a low level of intraspecific variability. The phylogeographic structure of the russet ground squirrel is slightly differentiated and does not form distinct geographically localized phyletic lines. In general, the range of the species is a single genetic space slightly separated by the Ural Mountains. The spatial distribution of haplotypes indicates the presence of an exchange between the western and eastern parts of the area in the Middle Urals. The indices of genetic diversity are evidence in favor of the expansive type of an increase in the population number, possible expansion of the range from the eastern part in the western direction, and short-term contacts of Cis-Ural and Trans-Ural northern populations. The results of the analysis of S. major genetic variability do not support the accepted subspecies system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Ognev, S.I., Zveri SSSR i prilezhashchikh stran: gryzuny (Animals of the Soviet Union and Neighboring Countries: Rodents), Moscow: Akad. Nauk SSSR, 1948, vol. 5.

  2. Pavlinov, I.Ya. and Khlyap, L.A., Order Rodentia, in Mlekopitayushchie Rossii: sistematiko-geograficheskii spravochnik (Mammals of Russia: A Taxonomy-Geographical Reference Book), Pavlinov, I.Ya. and Lisovskii, A.A., Eds., Moscow: KMK, 2012, no. 52, pp. 142—312.

    Google Scholar 

  3. Ermakov, O.A., Titov, A.F., Surin, S.V., et al., A molecular genetic study of hybridization in four species of ground squirrels (Spermophilus: Rodentia, Sciuridae), Russ. J. Genet., 2002, vol. 38, no. 7, pp. 796—809. https://doi.org/10.1023/A:1016395722664

    Article  CAS  Google Scholar 

  4. Titov, S.V., Ermakov, O.A., Surin, V.L., et al., Molecular genetic analysis of maternal and paternal lines during hybridization of ground squirrels (Spermophilus: Rodentia, Sciuridae), Byull. Mosk. O-va Ispyt. Prir., Otd. Biol., 2006, vol. 111, no. 5, pp. 30—35.

    Google Scholar 

  5. Titov, S.V., Ermakov, O.A., and Surin, V.L., Molecular, genetic, and bioacoustic diagnostics of russet (Spermophilus major Pallas, 1778) and yellow (S. fulvus Lichtenstein, 1823) ground squirrels from a joint settlement, Byull. Mosk. O-va Ispyt. Prir., Otd. Biol., 2005, vol. 110, no. 4, pp. 72—77.

    Google Scholar 

  6. Spiridonova, L.N., Chelomina, G.N., Starikov, V.P., et al., RAPD-PCR analysis of ground squirrels from the Tobol—Ishim interfluve: evidence for interspecific hybridization between ground squirrel species Spermophilus major and S. erythrogenys, Russ. J. Genet., 2005, vol. 41, no. 9, pp. 991—1001. https://doi.org/10.1007/s11177-005-0190-x

    Article  CAS  Google Scholar 

  7. Spiridonova, L.N., Chelomina, G.N., Tsuda, K. et al., Genetic evidence of extensive introgression of short-tailed ground squirrel genes in a hybridization zone of Spermophilus major and S. erythrogenys, inferred from sequencing of the mtDNA cytochrome b gene, Russ. J. Genet., 2006, vol. 42, no. 7, pp. 802—809. https://doi.org/10.1134/S1022795406070167

    Article  CAS  Google Scholar 

  8. Bazhanov, V.S., Ground squirrel hybrids (about of interspecific hybridization in nature), Dokl. Akad. Nauk SSSR, 1944, vol. 12, no. 7, pp. 321—322.

    Google Scholar 

  9. McEntee, J.P., Burleigh, J.G., and Singhal, S., Dispersal predicts hybrid zone widths across animal diversity: implications for species borders under incomplete reproductive isolation, Am. Natur., 2020, vol. 196, no. 1, pp. 1—21. https://doi.org/10.1086/709109

    Article  Google Scholar 

  10. Titov, S.V., Ermakov, O.A., Shmyrov, A.A., et al., Population characteristics of interspecific hybridization of ground squirrels (Spermophilus, Rodentia, Sciuridae), Byull. Mosk. O-va Ispyt. Prir., Otd. Biol., 2006, vol. 111, no. 5, pp. 36—41.

    Google Scholar 

  11. Titov, S.V., Shmyrov, A.A., and Kuz’min, A.A., Biotope principles of sympatry and interspecies hybridization in mammals (by the example of the genus Spermophilus), Biol. Bull., 2012, no. 1, pp. 36—44. https://doi.org/10.1134/S1062359012010116

  12. Ermakov, O.A., Simonov, E., Surin, V.L., et al., Implications of hybridization, NUMTs, and overlooked diversity for DNA barcoding of Eurasian ground squirrels, PLoS One, 2015, vol. 10, no. 1. e0117201. https://doi.org/10.1371/journal.pone.0117201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gromov, I.M. and Erbaeva, M.A., Mlekopitayushchie fauny Rossii i sopredel’nykh territorii. Zaitseobraznye i gryzuny (The Mammals of Russia and Adjacent Territories (Lagomorphs and Rodents)), St. Petersburg: Zoologicheskii Institut, 1995.

  14. Korablev, V.P., Frisman, L.V., Zvirka, M.V., et al., Cytogenetic and allozyme studies of ground squirrels of the group major (Spermophilus, Sciuridae, Rodentia), in Problemy evolyutsii (Problems of Evolution), Vladivostok: Dal’nauka, 2003, vol. 5, pp. 150—166.

  15. Nikol’skii, A.A., On the issue of the range border of the russet (Citellus major) and red-cheeked (C. erythrogenys) ground squirrels in Northern Kazakhstan, Zool. Zh., 1984, vol. 63, no. 2, pp. 1216—1225.

    Google Scholar 

  16. Kryštufek, B., and Vohralik, V., Taxonomic revision of the Palaearctic rodents (Rodentia): Sciuridae: Xerinae 1 (Eutamias and Spermophilus), Lynx n.s. (Praha), 2012, vol. 43, nos. 1—2, pp. 17—111.

    Google Scholar 

  17. Kuznetsov, B.A., Mlekopitayushchie Kazakhstana (Mammals of Kazakhstan) Moscow: Mosk. O-vo Ispyt. Prir., 1948.

  18. Afanas’ev, A.V., Bazhanov, V.S., Korelov, M.N., et al., Zveri Kazakhstana (Mammals of Kazakhstan), Alma-Ata: Akad. Nauk Kaz. SSR, 1953.

  19. Gromov, I.M., Bibikov, D.I., Kalabukhov, N.I., and Meier, N.N., Fauna SSSR: mlekopitayushchie (Fauna of the USSR: Mammals), vol. 3, issue 2: Nazemnye belich’i (Marmotinae) fauny SSSR (Terrestrial Sciurids (Marmotinae) of the Soviet Union), Moscow: Nauka, 1965.

  20. Nikol’skii, A.A. and Rumyantsev, V.Yu., Variation of the sound signal of the russet ground squirrels (Rodentia, Sciuridae, Spermophilus) as a model of geographic speciation, Zool. Zh., 2004, vol. 83, no. 8, pp. 1008—1017.

    Google Scholar 

  21. Aljanabi, S.M. and Martinez, I., Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques, Nucleic Acids Res., 1997, vol. 25, no. 22, pp. 4692—4693. https://doi.org/10.1093/nar/25.22.4692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab., 1989, 2nd ed.

    Google Scholar 

  23. Kocher, T.D., Thomas, W.K., and Meyer, A., Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers, Proc. Natl. Acad. Sci. U.S.A., 1989, vol. 86, pp. 6196—6200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ekimova, I., Korshunova, T., Schepetov, D., et al., Integrative systematics of northern and Arctic nudibranchs of the genus Dendronotus (Mollusca, Gastropoda), with descriptions of three new species, Zool. J. Linn. Soc., 2015, vol. 173, no. 4, pp. 841—886. https://doi.org/10.1111/zoj.12214

    Article  Google Scholar 

  25. Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 2004, vol. 32, no. 5, pp. 1792—1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kumar, S., Stecher, G., Li, M., et al., MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms, Mol. Biol. Evol., 2018, vol. 35, pp. 1547—1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Darriba, D., Taboada, G.L., Doallo, R., and Posada, D., jModelTest 2: more models, new heuristics and parallel computing, Nat. Methods, 2012, vol. 9, no. 8, p. 772. https://doi.org/10.1038/nmeth.2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ronquist, F., Teslenko, M., Mark, P.V.D., Ayres, D.L., and Darling, A., MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space, Syst. Biol., 2012, vol. 61, no. 3, pp. 539—542. https://doi.org/10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  29. Leigh, J.W. and Bryant, D., POPART: full-feature software for haplotype network construction, Methods Ecol. Evol., 2015, vol. 6, no. 9, pp. 1110—1116. https://doi.org/10.1111/2041-210X.12410

    Article  Google Scholar 

  30. Excoffier, L. and Lischer, H.E.L., Arlequin Suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Resour., 2010, vol. 10, pp. 564—567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  31. Fu, Y.-X., Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection, Genetics, 1997, vol. 147, pp. 915—925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Peakall, R. and Smouse, P.E., GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research, Mol. Ecol. Notes, 2006, vol. 6, pp. 288—295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  33. Peakall, R. and Smouse, P.E., GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update, Bioinformatics, 2012, no. 28, pp. 2537—2539. https://doi.org/10.1093/bioinformatics/bts460

  34. Ermakov, O.A., Surin, V.L., and Titov, S.V., Genetic diversity and differentiation of the speckled ground squirrel inferred from sequencing of mtDNA control region, Izv. Penz. Gos. Pedagog. Univ. im. V.G. Belinskogo, Estestv. Nauki, 2011, no. 25, pp. 176—180.

  35. Brandler, O.V., Biryuk, I.Yu., Ermakov, O.A., et al., Interspecific and intraspecific molecular-genetic variation and differentiation in speckled ground squirrels, Spermophilus suslicus and S. odessanus (Rodentia, Sciuridae, Marmotini), Visn. Khark. Nats. Univ. im V.N. Karazina, Ser. Biol., 2015, no. 24 (1153), pp. 58–67.

  36. Ermakov, O.A., Simonov, E.P., Surin, V.L., and Titov, S.V., Intraspecific polymorphism of the mitochondrial DNA control region and phylogeography of little ground squirrel (Spermophilus pygmaeus, Sciuridae, Rodentia), Russ. J. Genet., 2018, vol. 54, no. 11, pp. 1332—1341. https://doi.org/10.1134/S1022795418110042

    Article  CAS  Google Scholar 

  37. Kapustina, S.Y., Adiya, Y., and Brandler, O.V., Genetic differentiation of the Daurian ground squirrel Spermophilus dauricus Brandt, 1843 according to variability of the mitochondrial DNA control region, Biol. Bull., 2018, vol. 45, no. 5, pp. 438—447. https://doi.org/10.1134/S1062359018050060

    Article  CAS  Google Scholar 

  38. Ermakov, O.A., Titov, S.V., Savinetskii, A.B., et al., Molecular-genetic and paleoecological arguments in favor of the conspecificity of little (Spermophilus pygmaeus) and Caucasian mountain (Spermophilus musicus) ground squirrels, Zool. Zh., 2006, vol. 85, no. 12, pp. 1474—1483.

    Google Scholar 

  39. Nadler, Ch.F., Sukernik, R.I., Hoffmann, R.S., et al., Evolution in ground squirrels: I. Transferrins in Holarctic populations of Spermophilus, Comp. Biochem. Physiol., 1974, vol. 47A, pp. 663—681.

    Article  Google Scholar 

  40. Nikonova, N.N., Famelis, T.V., and Sharafutdinov, M.I., Multi-temporal maps of vegetation (by the example of Krasnoufimskaya forest—steppe), Geobotanicheskoe kartografirovanie: ezhegodnik (Geobotanical Cartography: Yearbook), 1987, pp. 26—38.

  41. Smirnov, N.G., Melkie mlekopitayushchie Srednego Urala v pozdnem pleistotsene i golotsene (Small Mammals of the Middle Urals in the Late Pleistocene and Holocene), Ekaterinburg: Nauka, 1993.

  42. Kuzmina, E.A., Late Pleistocene and Holocene dynamics of small mammal communities in the South Trans-Urals, Extended Abstract of Cand. Sci. Dissertation, Inst. Ekol. Rast. Zhivotn. Ural. Otd. Russ. Akad. Sci., Ekaterinburg, 2006.

  43. Kosintsev, P.A. and Bachura, O.P., Formation of modern geographical ranges of mammals in the Urals during the Holocene, Zool. Zh., 2013, vol. 92, no. 9, pp. 1098—1106.

    Google Scholar 

  44. Chemagina, D., Strukova, T., Pogodina, N., et al., Ground squirrels of the genus Spermophilus from the Pleistocene and Holocene localities of the Middle and South Urals and Trans-Urals region: the dental features, Hist. Biol., 2019, pp. 1—14. https://doi.org/10.1080/08912963.2019.1655010

  45. Svitoch, A.A., Regressive epochs of the Great Caspian, Vodn. Resur., 2016, vol. 43, no. 2, pp. 134—148. https://doi.org/10.7868/S0321059616020164

    Article  Google Scholar 

  46. Ermakov, O.A. and Titov, S.V., Dynamics of the range boundaries in russet ground squirrel Spermophilus major (Rodenta, Sciuridae) from the Volga Region, Zool. Zh., 2000, vol. 79, no. 4, pp. 503—509.

    Google Scholar 

  47. Brandler, O.V. and Tukhbatullin, A.R., The current state of the russet ground squirrel Spermophilus major populations, Aktual’nye problemy ekologii i prirodopol’zovatiya (Current Problems of Ecology and Nature Management) (Collection of Scientific Papers of the XIX Theoretical and Practical Conference), Moscow: Rossiiskii Universitet Druzhby Narodov, 2018, pp. 54—58.

Download references

ACKNOWLEDGMENTS

We are grateful to the students of Ural Federal University A.S. Novgorodtseva, D.D. Chemagina, and I.F. Araslanov for their help in collecting the material. We are grateful to I.V. Karyakin for his help in organizing field expeditions in 2016. We are grateful to V.P. Starikov for providing samples of tissues of ground squirrels from Kurgan oblast.

Funding

This study was supported by the Russian Foundation for Basic Research (grant nos. 16-04-01826, 18-04-00687, and 20-04-00618). The work was carried out by O.V.B., A.R.T., S.Yu.K., and D.M.S. within the IDB RAS Government basic research program no. 0088-2021-0019. The work was done using the resources of the Joint Wild Animal Tissue Collection for Basic, Applied, and Conservation Research and the equipment of the Core Centrum of IDB RAS.

Author information

Authors and Affiliations

Authors

Contributions

The authors O.V. Brandler and A.R. Tukhbatullin made an equal contribution to the work and preparation of the manuscript. All authors contributed to the discussion of the results of research and to writing the manuscript.

Corresponding author

Correspondence to O. V. Brandler.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by A. Barkhash

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandler, O.V., Tukhbatullin, A.R., Kapustina, S.Y. et al. Variability of Mitochondrial DNA Control Region and Phylogeography of Russet Ground Squirrel (Spermophilus major, Sciuridae, Rodentia). Russ J Genet 57, 825–835 (2021). https://doi.org/10.1134/S102279542107005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279542107005X

Keywords:

Navigation