Skip to main content
Log in

Clock Gene, Melatonin, and the Sleep–Wake Cycle

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The review examines the role of the Clock gene and melatonin as participants in human circadian rhythms. The results of studies on the association of the Clock gene polymorphisms and the sleep–wake cycle, as well as circadian rhythms of melatonin secretion in different chronotypes and insomnia, are presented. A hypothesis about the role of the Clock 3111T/C gene polymorphism in the formation of insomnia in Caucasian women living in Eastern Siberia is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Zhang, Y., Ren, R., Lei, F., et al., Worldwide and regional prevalence rates of co-occurrence of insomnia and insomnia symptoms with obstructive sleep apnea: a systematic review and meta-analysis, Sleep Med. Rev., 2019, vol. 45, pp. 1—17. https://doi.org/10.1016/j.smrv.2019.01.004

    Article  CAS  PubMed  Google Scholar 

  2. Somnologiya i meditsina sna: natsional’noe rukovodstvo pamyati A.M. Veina i Ya.I. Levina (Somnology and Sleep Medicine: National Handbook in Memory of A.M. Vein and Ya.I. Levin), Poluektov, M.G., Ed., Moscow: Medcongress, 2016.

    Google Scholar 

  3. Konopka, R.J. and Benzer, S., Clock mutants of Drosophila melanogaster, Proc. Natl. Acad. Sci. U.S.A., 1971, vol. 68, no. 9, pp. 2112—2116.

    Article  CAS  Google Scholar 

  4. Takahashi, J.S., Molecular architecture of the circadian clock in mammals, in A Time for Metabolism and Hormones, Cham (CH): Springer-Verlag, 2016, pp. 13—24.

  5. Jagannath, A., Taylor, L., Wakaf, Z., et al., The genetics of circadian rhythms, sleep and health, Hum. Mol. Genet., 2017, vol. 26, no. R2, pp. R128—R138. https://doi.org/10.1093/hmg/ddx240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, S., Dai, M., Wang, X., et al., Signalling entrains the peripheral circadian clock, Cell Signal., 2020, vol. 69, p. 109433. https://doi.org/10.1016/j.cellsig.2019.109433

    Article  CAS  PubMed  Google Scholar 

  7. Mishima, K., Tozawa, T., Satoh, K., et al., The 3111T/C polymorphism of hClock is associated with evening preference and delayed sleep timing in a Japanese population sample, Am. J. Med. Genet., Part B, 2005, vol. 133B, pp. 101—104. https://doi.org/10.1002/ajmg.b.30110

    Article  Google Scholar 

  8. Katzenberg, D., Young, T., Finn, L., et al., A CLOCK polymorphism associated with human diurnal preference, Sleep, 1998, vol. 21, no. 6, pp. 569—576.

    Article  CAS  Google Scholar 

  9. Friedman, L., Zeitzer, J.M., Kushida, C., et al., Scheduled bright light for treatment of insomnia in older adults, J. Am. Geriatr. Soc., 2009, vol. 57, no. 3, pp. 441—452. https://doi.org/10.1111/j.1532-5415.2008.02164.x

    Article  PubMed  PubMed Central  Google Scholar 

  10. Robilliard, D.L., Archer, S.N., Arendt, J., et al., The 3111 Clock gene polymorphism is not associated with sleep and circadian rhythmicity in phenotypically characterized human subjects, J. Sleep Res., 2002, vol. 11, pp. 305—312.

    Article  Google Scholar 

  11. Barclay, N.L., Eley, T.C., Mill, J., et al., Sleep quality and diurnal preference in a sample of young adults: associations with 5HTTLPR, PER3, and CLOCK 3111, Am. J. Med. Genet., Part B, 2011, vol. 156B, no. 6, pp. 681—690. https://doi.org/10.1002/ajmg.b.31210

    Article  CAS  Google Scholar 

  12. Pedrazzoli, M., Louzada, F.M., Pereira, D.S., et al., Clock polymorphisms and circadian rhythms phenotypes in a sample of the Brazilian population, Chronobiol. Int., 2007, vol. 24, pp. 1—8.

    Article  CAS  Google Scholar 

  13. Iwase, T., Kajimura, N., Uchiyama, M., et al., Mutation screening of the human Clock gene in circadian rhythm sleep disorders, Psychiatry Res., 2002, vol. 109, pp. 121—128.

    Article  CAS  Google Scholar 

  14. Serretti, A., Benedetti, F., Mandelli, L., et al., Genetic dissection of psychopathological symptoms: insomnia in mood disorders and CLOCK gene polymorphism, Am. J. Med. Genet., Part B, 2003, vol. 121B, pp. 35—38. https://doi.org/10.1002/ajmg.b.20053

    Article  Google Scholar 

  15. Benedetti, F., Dallaspezia, S., and Fulgosi, M.C., Actimetric evidence that CLOCK 3111T/C SNP influence sleep and activity patterns in patients affected by bipolar depression, Am. J. Med. Genet., Part B, 2007, vol. 144B, pp. 631—635.

    CAS  Google Scholar 

  16. Desan, P.H., Oren, D.A., Malison, R., et al., Genetic polymorphism at the CLOCK gene locus and major depression, Am. J. Med. Genet., Part B, 2000, vol. 96, pp. 418—421.

    CAS  Google Scholar 

  17. Shi, J., Wittke-Thompson, J.K., Badner, J.A., et al., Clock genes may influence bipolar disorder susceptibility and dysfunctional circadian rhythm, Am. J. Med. Genet., Part B, 2008, vol. 147B, pp. 1047—1055. https://doi.org/10.1002/ajmg.b.30714

    Article  CAS  Google Scholar 

  18. Voinescu, B., Thome, J., and Orasan, R., The rs 1801260 CLOCK polymorphism, links to depression, insomnia and diurnal preference—preliminary findings from a Romanian sample, HVM Bioflux, 2009, vol. 1, no. 2, pp. 67—73.

    CAS  Google Scholar 

  19. Bailer, U., Wiesegger, G., Leisch, F., et al., No association of clock gene T3111C polymorphism and affective disorders, Eur. Neuropsychopharmacol., 2005, vol. 15, no. 1, pp. 51—55. https://doi.org/10.1016/j.euroneuro.2004.05.004

    Article  CAS  PubMed  Google Scholar 

  20. Johansson, C., Willeit, M., Smedh, C., et al., Circadian clock-related polymorphisms in seasonal affective disorder and their relevance to diurnal preference, Neuropsychopharmacology, 2003, vol. 28, pp. 734—739. https://doi.org/10.1038/sj.npp.1300121

    Article  CAS  PubMed  Google Scholar 

  21. Antypa, N., Mandelli, L., Nearchou, F.A., et al., The 3111T/C polymorphism interacts with stressful life events to influence patterns of sleep in females, Chronobiol. Int., 2012, vol. 29, no. 7, pp. 891—897. https://doi.org/10.3109/07420528.2012.699380

    Article  CAS  PubMed  Google Scholar 

  22. Paik, J.W., Lee, H.J., Kang, S.G., et al., CLOCK gene 3111C/T polymorphism is not associated with seasonal variations in mood and behavior in Korean college students, Psychiatry Clin. Neurosci., 2007, vol. 61, pp. 124—126. https://doi.org/10.1111/j.1440-1819.2007.01621.x

    Article  CAS  PubMed  Google Scholar 

  23. Ziv-Gal, A., Flaws, J.A., Mahoney, M.M., et al., Genetic polymorphisms in the aryl hydrocarbon receptor–signaling pathway and sleep disturbances in middle-aged women, Sleep Med., 2013, vol. 14, no. 9, pp. 883—887. https://doi.org/10.1016/j.sleep.2013.04.007

    Article  PubMed  PubMed Central  Google Scholar 

  24. Semenova, N.V., Madaeva, I.M., Bairova, T.A., et al., Association of the melatonin circadian rhythms with clock 3111T/C gene polymorphism in Caucasian and Asian menopausal women with insomnia, Chronobiol. Int., 2018, vol. 35, no. 8, pp. 1066—1076. https://doi.org/10.1080/07420528.2018.1456447

    Article  CAS  PubMed  Google Scholar 

  25. Semenova, N.V., Madaeva, I.M., Bairova, T.I., et al., 3111T/C Clock gene polymorphism in women with insomnia, Bull. Exp. Biol. Med., 2017, vol. 163, no. 4, pp. 461—464. https://doi.org/10.1007/s10517-017-3828-5

    Article  CAS  PubMed  Google Scholar 

  26. Riestra, P., Gebreab, S.Y., Xu, R., et al., Circadian CLOCK gene polymorphisms in relation to sleep patterns and obesity in African Americans: findings from the Jackson heart study, BMC Genet., 2017, vol. 18, p. 58. https://doi.org/10.1186/s12863-017-0522-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Allebrandt, K.V., Teder-Laving, M., Akyol, M., et al., CLOCK gene variants associate with sleep duration in two independent populations, Biol. Psychiatry, 2010, vol. 67, no. 11, pp. 1040—1047. https://doi.org/10.1016/j.biopsych.2009.12.026

    Article  CAS  PubMed  Google Scholar 

  28. Lane, J.M., Tare, A., Cade, B.E., et al., Common variants in CLOCK are not associated with measures of sleep duration in people of European ancestry from the sleep heart health study, Biol. Psychiatry, 2013, vol. 74, no. 12, pp. e33—e35. https://doi.org/10.1016/j.biopsych.2013.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao, D., Yu, Y., Shen, Y., et al., Melatonin synthesis and function: evolutionary history in animals and plants, Front. Endocrinol. (Lausanne), 2019, vol. 10, p. 249. https://doi.org/10.3389/fendo.2019.00249

    Article  Google Scholar 

  30. Pandi-Perumal, S.R., Srinivasan, V., Spence, D.W., et al., Role of the melatonin system in the control of sleep: therapeutic implications, CNS Drugs, 2007, vol. 21, no. 12, pp. 995—1018.

    Article  CAS  Google Scholar 

  31. Zhdanova, I.V. and Tucci, V., Melatonin, circadian rhythms, and sleep, Curr. Treat. Options Neurol., 2003, vol. 5, no. 3, pp. 225—229.

    Article  Google Scholar 

  32. Lavie, P. Melatonin: role in gating nocturnal rise in sleep property, J. Biol. Rhythms, 1997, vol. 12, pp. 657—665.

    Article  CAS  Google Scholar 

  33. Koval’zon, V.M. and Vein, A.M., Melatonin and sleep, in Melatonin v norme i patologii (Melatonin in Health and Disease), Moscow: Medpraktika-M, 2004, pp. 182—197.

  34. Kaladze, N.N., Soboleva, E.M., and Skoromnaya, N.N., Results and perspectives of studying physiological, pathogenetic, and pharmacological effects of melatonin, Zdorov’ye Rebenka, 2010, no. 2(23), pp. 156—166.

  35. Comai, S., Ochoa-Sanchez, R., and Gobbi, G., Sleep—wake characterization of double MT(1)/MT(2) receptor knockout mice and comparison with MT(1) and MT(2) receptor knockout mice, Behavior. Brain Res., 2013, vol. 243, pp. 231—238. https://doi.org/10.1016/j.bbr.2013.01.008

    Article  CAS  Google Scholar 

  36. Michurina, S.V., Vasendin, D.V., and Ishchenko, I.Yu., Physiological and biological effects of melatonin: some results and research prospects, Ross. Fisiol. Zh. im. I.M. Sechenova,. 2018, vol. 104, no. 3, pp. 257—271.

    Google Scholar 

  37. Guissoni Campos, L.M., Hataka, A., Vieira, I.Z., et al., Circadian clock proteins and melatonin receptors in neurons and glia of the Sapajus apella cerebellum, Front. Physiol., 2018, vol. 9, p. 5. https://doi.org/10.3389/fphys.2018.00005

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gibertini, M., Graham, C., and Cook, M.R., Self-report of circadian type reflects the phase of the melatonin rhythm, Biol. Psychol., 1999, vol. 50, pp. 19—33.

    Article  CAS  Google Scholar 

  39. Morera-Fumero, A.L., Abreu-Gonzalez, P., Henry-Benitez, M., et al., Chronotype as modulator of morning serum melatonin levels, Actas Esp. Psychiatr., 2013, vol. 41, no. 3, pp. 149—153.

    Google Scholar 

  40. Simpkin, C.T., Jenni, O.G., Carskadon, M.A., et al., Chronotype is associated with the timing of the circadian clock and sleep in toddlers, J. Sleep Res., 2014, vol. 23, no. 4, pp. 397—405. https://doi.org/10.1111/jsr.12142

    Article  PubMed  PubMed Central  Google Scholar 

  41. Burgess, H.J. and Fogg, L.F., Individual differences in the amount and timing of salivary melatonin secretion, PLoS One, 2008, vol. 3. e3055.

    Article  Google Scholar 

  42. Zavodnov, O.P., Zakruzhnaya, M.A., Botashova, T.L., and Avrutskaya, V.V., Peculiarities of melatonin metabolism in women with different chronophysiologic and stereofunctional organization of reproductive system and light deprivation in the preventive treatment of climacteric syndrome, Sovremennyye problemy nauki i obrazovaniya (Current Challenges in Science and Education), 2012, no. 2. http://www.science-education.ru/102-5487. Accessed November 8, 2012.

  43. Micic, G., Lovato, N., Gradisar, M., et al., Nocturnal melatonin profiles in patients with delayed sleep-wake phase disorder and control sleepers, J. Biol. Rhythms, 2015, vol. 30, no. 5, pp. 437—448.

    Article  CAS  Google Scholar 

  44. Micic, G., Lovato, N., Gradisar, M., et al., Circadian melatonin and temperature taus in delayed sleep-wake phase disorder and non-24-hour sleep-wake rhythm disorder patients: an ultradian constant routine study, J. Biol. Rhythms, 2016, vol. 31, no. 4, pp. 387—405. https://doi.org/10.1177/0748730416650069

    Article  CAS  PubMed  Google Scholar 

  45. Madaeva, I.M., Semenova, N.V., Solodova, E.I., et al., Circadian rhythms of melatonin secretion in peri and postmenopausal women with insomnia, Int. J. Biomed., 2017, vol. 7, no. 2, pp. 126—130. https://doi.org/10.21103/Article7(2)OA8

    Article  Google Scholar 

  46. Meliska, C.J., Martinez, L.F., Lopez, A.M., et al., Relationship of morningness—eveningness questionnaire score to melatonin and sleep timing, body mass index and atypical depressive symptoms in peri- and post-menopausal women, Psychiatry Res., 2011, vol. 188, no. 1, pp. 88—95.

    Article  CAS  Google Scholar 

  47. Parry, B.L., Meliska, C.J., Sorenson, D.L., et al., Increased melatonin and delayed offset in menopausal depression: role of years past menopause, follicle-stimulating hormone, sleep end time, and body mass index, J. Clin. Endocrinol. Metab., 2008, vol. 93, no. 1, pp. 54—60.

    Article  CAS  Google Scholar 

  48. Xie, Z., Chen, F., Li, W.A., et al., A review of sleep disorders and melatonin, Neurol. Res., 2017, vol. 39, no. 6, pp. 559—565. https://doi.org/10.1080/01616412.2017.1315864

    Article  CAS  PubMed  Google Scholar 

  49. Duffy, J.F., Zeitzer, J.M., Rimmer, D.W., et al., Peak of circadian melatonin rhythm occurs later within the sleep of older subjects, Am. J. Physiol. Endocrinol. Metab., 2002, vol. 282, no. 2, pp. E297—E303.

    Article  CAS  Google Scholar 

  50. Goldman, S.E., Adkins, K.W., Calcutt, M.W., et al., Melatonin in children with autism spectrum disorders: endogenous and pharmacokinetic profiles in relation to sleep, J. Autism Dev. Disord., 2014, vol. 44, pp. 2525—2535. https://doi.org/10.1007/s10803-014-2123-9

    Article  PubMed  PubMed Central  Google Scholar 

  51. Holvoet, E. and Gabriels, L., Disturbed sleep in children with ADHD: is there a place for melatonin as a treatment option?, Tijdschr. Psychiatr., 2013, vol. 55, pp. 349—357.

    CAS  PubMed  Google Scholar 

  52. Madaeva, I.M., Danusevich, I.N., Zhambalova, R.M., and Kolesnikova, L.I., Melatonin in therapy of sleep disorders age-related estrogen deficiency, Zh. Nevrol. Psikhiatrii im. S.S. Korsakova, 2017, vol. 117, no. 5, pp. 81—84. https://doi.org/10.17116/jnevro20171175181-84

    Article  CAS  Google Scholar 

  53. Bell-Pedersen, D., Cassone, V.M., Earnest, D.J., et al., Circadian rhythms from multiple oscillators: lessons from diverse organisms, Nat. Rev. Genet., 2005, vol. 6, pp. 544—556.

    Article  CAS  Google Scholar 

  54. Jiang, N., Wang, Z., Cao, J., et al., Effect of monochromatic light on circadian rhythmic expression of clock genes in the hypothalamus of chick, J. Photochem. Photobiol. B., 2017, vol. 173, pp. 476—484. https://doi.org/10.1016/j.jphotobiol.2017.06.027

    Article  CAS  PubMed  Google Scholar 

  55. Cao, J., Bian, J., Wang, Z., et al., Effect of monochromatic light on circadian rhythmic expression of clock genes and arylalkylamine N-acetyltransferase in chick retina, Chronobiol. Int., 2017, vol. 34, pp. 1149—1157. https://doi.org/10.1080/07420528.2017.1354013

    Article  CAS  PubMed  Google Scholar 

  56. Ma, S., Wang, Z., Cao, J., et al., BMAL1 but not CLOCK is associated with monochromatic green light-induced circadian rhythm of melatonin in chick pinealocytes, Endocr. Connect., 2019, vol. 8, no. 1, pp. 57—68. https://doi.org/10.1530/EC-18-0377

    Article  CAS  PubMed  Google Scholar 

  57. DeBruyne, J.P., Noton, E., Lambert, C.M., et al., A clock shock: mouse CLOCK is not required for circadian oscillator function, Neuron, 2006, vol. 50, pp. 465—477. https://doi.org/10.1016/j.neuron.2006.03.041

    Article  CAS  PubMed  Google Scholar 

  58. Ozburn, A.R., Purohit, K., Parekh, P.K., et al., Functional implications of the CLOCK 3111T/C single-nucleotide polymorphism, Front. Psychiatry, 2016, vol. 7, p. 67. https://doi.org/10.3389/fpsyt.2016.00067

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bochkov, N.P., Puzyrev, V.P., and Smirnikhina, S.A., Klinicheskaya genetika (Clinical Genetics) Moscow: GEOTAR-Media, 2015.

  60. Kolesnikova, L.I., Kolesnikov, S.I., Madaeva, I.M., and Semenova, N.V., Etnogeneticheskiye i molekulyarno-metabolicheskiye aspekty narushenii sna v klimaktericheskom periode (Ethnogenetic and Molecular-Metabolic Aspects of Sleep Disorders during the Climacteric Period), Moscow: Ross. Akad. Nauk, 2019.

  61. Borinskaya, S.A. and Yankovsky, N.K., Human genetics and genomics: populations and ethnic groups in space and time: evolution and medical aspects, Russ. J. Genet.: Appl. Res., 2014, vol. 4, no. 4, pp. 189—199. https://doi.org/10.1134/S2079059714030010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Semenova.

Ethics declarations

The authors declare no conflict of interest.

The present study contains no data on research involving animals as the objects of the study.

Additional information

Translated by A. Kazantseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenova, N.V., Madaeva, I.M. & Kolesnikova, L.I. Clock Gene, Melatonin, and the Sleep–Wake Cycle. Russ J Genet 57, 251–257 (2021). https://doi.org/10.1134/S1022795421030121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795421030121

Keywords:

Navigation