Skip to main content
Log in

Phenomenon of Multiple Mutations in the 35S rRNA Genes of the C Subgenome of Polyploid Avena L.

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Using sequence-tagged DNA sequencing on the Roche 454 platform, we studied intragenomic polymorphism of one of the 35S rRNA regions (18S rDNA fragment–ITS1–fragment of 5.8S rDNA) in three hexaploid Avena species with karyotypes AACCDD and a tetraploid species A. insularis (AAСС or CCDD). Instead of expected 50% of C-variant ITS1 in A. insularis and 33% of C-variant ITS1 in hexaploids A. fatua, A. ludoviciana, and A. sterilis, the actual rate of C-subgenome specific ITSs comprised around 3.3% of rDNA in A. insularis and 1.4–2.4% of rDNA in hexaploid genomes. The 18S rDNA (fragment), ITS1 and 5.8S rDNA (small fragment) of the C-subgenome origin were 10 times more variable than the same sequences from the A-genome. Some of the C-subgenome sequences contained deletions, including deletions in the 18S rRNA coding region. The results of FISH hybridization with pTa71 and pTa794 confirm the fact that polyploids lost a significant part of the 35S rDNA and 5S rDNA obtained from a diploid ancestor with the CC karyotype. Our results show that the loss of the 35S rDNA of the C type occurs against the background of multiple single nucleotide polymorphisms (SNPs) and deletions accumulation in these sequences. The fact that all C-subgenome ITS1 sequences in the genomes of polyploids were represented by single (unique) copies might indicate that the appearance of multiple mutations in the “repressed” 35S rRNA loci was not accompanied by homogenization of rDNA. Hence, there is a reason to believe that the process of rDNA isogenization and the process of transcription/silencing are related phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Van de Peer, Y., Mizrachi, E., and Marchal, K., The evolutionary significance of polyploidy, Nat. Rev. Genet., 2017, vol. 18, pp. 411—424. https://doi.org/10.1038/nrg.2017.26

    Article  CAS  PubMed  Google Scholar 

  2. Soltis, D.E., Visger, C.J., Marchant, D.B., and Soltis, P.S., Polyploidy: pitfalls and paths to a paradigm, Am. J. Bot., 2016, vol. 103, pp. 1146—1166. https://doi.org/10.3732/ajb.1500501

    Article  PubMed  Google Scholar 

  3. Hu, G. and Wendel, J.F., Cis–trans controls and regulatory novelty accompanying allopolyploidization, New Phytol., 2019, vol. 221, pp. 1691—1700. https://doi.org/10.1111/nph.15515

    Article  PubMed  Google Scholar 

  4. Rodionov, A.V., Amosova, A.V., Belyakov, E.A., et al., Genetic consequences of interspecific hybridization, its role in speciation and phenotypic diversity of plants, Russ. J. Genet., 2019, vol. 55, no. 3, pp. 278—294. https://doi.org/10.1134/S1022795419030141

    Article  CAS  Google Scholar 

  5. Rodionov, A.V., Interspecific hybridization and polyploidy in the evolution of plants, Vavilovskii Zh. Genet. Sel., 2013, vol. 17, no. 4 (2), pp. 916—929.

  6. Rodionov, A.V., Nosov, N.N., Kim, E.S., et al., The origin of polyploid genomes of bluegrasses Poa L. and gene flow between northern pacific and sub-Antarctic islands, Russ. J. Genet., 2010, vol. 46, no. 12, pp. 1407—1416.

    Article  CAS  Google Scholar 

  7. Xiong, Z., Gaeta, R.T., and Pires, J.C., Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus,Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 7908—7913. https://doi.org/10.1073/pnas.1014138108

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lipman, M.J., Chester, M., Soltis, P.S., and Soltis, D.E., Natural hybrids between Tragopogon mirus and T. miscellus (Asteraceae): a new perspective on karyotypic changes following hybridization at the polyploid level, Am. J. Bot., 2013, vol. 100, pp. 2016—2022. https://doi.org/10.3732/ajb.1300036

    Article  PubMed  Google Scholar 

  9. Navashin, M., Chromosomal alterations caused by hybridization and their bearing upon certain general genetic problems, Cytologia, 1934, vol. 5, pp. 169—203.

    Article  Google Scholar 

  10. Kovarik, A., Dadejova, M., Lim, Y.K., et al., Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics, Ann. Bot., 2008, vol. 101, pp. 815—823. https://doi.org/10.1093/aob/mcn019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Matyášek, R., Renny-Byfield, S., Fulneček, J., et al., Next generation sequencing analysis reveals a relationship between rDNA unit diversity and locus number in Nicotiana diploids, BMC Genomics, 2012, vol. 13, p. 722. https://doi.org/10.1186/1471-2164-13-722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Long, H., Chen, C., Wang, B., and Feng, Y., rDNA genetic imbalance and nucleolar chromatin restructuring is induced by distant hybridization between Raphanus sativus and Brassica alboglabra,PLoS One, 2015, vol. 10, no. 2. e0117198. https://doi.org/10.1371/journal.pone.0117198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Punina, E.O., Machs, E.M., Krapivskaya, E.E., et al., Interspecific hybridization in the genus Paeonia (Paeoniaceae): polymorphic sites in transcribed spacers of the 45S rRNA genes as indicators of natural and artificial peony hybrids, Russ. J. Genet., 2012, vol. 48, no. 7, pp. 684—697. https://doi.org/10.1134/S1022795412070113

    Article  CAS  Google Scholar 

  14. Rodionov, A.V., Dobryakova, K.S., and Punina, E.O., Polymorphic sites in ITS1–5.8S rDNA–ITS2 region in hybridogenic genus × Elyhordeum and putative interspecific hybrids Elymus (Poaceae: Triticeae), Russ. J. Genet., 2018, vol. 54, no. 9, pp. 999—1014. https://doi.org/10.1134/S1022795418090120

    Article  Google Scholar 

  15. Rodionov, A.V., Gnutikov, A.A., Kotsinyan, A.R., et al., ITS1–5.8S rDNA–ITS2 sequence in 35S rRNA genes as marker for reconstruction of phylogeny of grasses (Poaceae family), Biol. Bull. Rev., 2017, vol. 7, no. 2, pp. 85—102. https://doi.org/10.1134/S2079086417020062

    Article  Google Scholar 

  16. Rodionov, A.V., Tyupa, N.B., Kim, E.S., et al., Genomic configuration of the autotetraploid oat species Avena macrostachya inferred from comparative analysis of ITS1 and ITS2 sequences: on the oat karyotype evolution during the early events of the Avena species divergence, Russ. J. Genet., 2005, vol. 41, no. 5, pp. 518—528. https://doi.org/10.1007/s11177-005-0120-y

    Article  CAS  Google Scholar 

  17. Nikoloudakis, N. and Katsiotis, A., The origin of the C-genome and cytoplasm of Avena polyploids, Theor. Appl. Genet., 2008, vol. 117, pp. 273—281. https://doi.org/10.1007/s00122-008-0772-9

    Article  CAS  PubMed  Google Scholar 

  18. Peng, Y.Y., Baum, B.R., Ren, C.Z., et al., The evolution pattern of rDNA ITS in Avena and phylogenetic relationship of the Avena species (Poaceae: Aveneae), Hereditas, 2010, vol. 147, pp. 183—204. https://doi.org/10.1111/j.1601-5223.2010.02172.x

    Article  PubMed  Google Scholar 

  19. Jellen, E.N., Gill, B.S., and Cox, T.S., Genomic in situ hybridization differentiates between A/D-and C-genome chromatin and detects intergenomic translocations in polyploid oat species (genus Avena), Genome, 1994, vol. 37, pp. 613—618.

    Article  CAS  PubMed  Google Scholar 

  20. Irigoyen, M.L., Loarce, Y., Linares, C., et al., Discrimination of the closely related A and B genomes in AABB tetraploid species of Avena,Theor. Appl. Genet., 2001, vol. 103, pp. 1160—1166.

    Article  CAS  Google Scholar 

  21. Shelukhina, O., Badaeva, E., Loskutov, I., and Pukhal’sky, V.A., A comparative cytogenetic study of the tetraploid oat species with the A and C genomes: Avena insularis, A. magna, and A. murphyi,Russ. J. Genet., 2007, vol. 43, pp. 613—626.

    Article  CAS  Google Scholar 

  22. Badaeva, E.D., Shelukhina, O.Y., Diederichsen, A., et al., Comparative cytogenetic analysis of Avena macrostachya and diploid C-genome Avena species, Genome, 2010, vol. 53, pp. 125—137. https://doi.org/10.1139/g09-089

    Article  CAS  PubMed  Google Scholar 

  23. Tyupa, N.B., Kim, E.S., Loskutov, I.G., and Rodionov, A.V., To the origin of polyploids in the genus Avena L.: molecular phylogenetic research, Tr. Prikl. Bot.,Genet. Sel., 2009, vol. 165, pp. 13—20.

    Google Scholar 

  24. Fominaya, A., Loarce, Y., Montes, A., and Ferrer, E., Chromosomal distribution patterns of the (AC) 10 microsatellite and other repetitive sequences, and their use in chromosome rearrangement analysis of species of the genus Avena,Genome, 2016, vol. 60, pp. 216—227. https://doi.org/10.1139/gen-2016-0146

    Article  CAS  PubMed  Google Scholar 

  25. Rajhathy, T. and Thomas, H.T., Chromosomal differentiation and speciation in diploid Avena,Can. J. Genet. Cytol., 1967, vol. 9, pp. 52—68.

    Article  Google Scholar 

  26. Doyle, J.J. and Doyle, J.L., A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phytochem. Bull., 1987, vol. 19, pp. 11—15.

    Google Scholar 

  27. Ridgway, K.P., Duck, J.M., and Young, J.P.W., Identification of roots from grass swards using PCR-RFLP and FFLP of the plastid trnL (UAA) intron, BMC Ecol., 2003, vol. 3, no. 8. https://doi.org/10.1186/1472-6785-3-8

  28. Stanford, A.M., Harden, R., and Parks, C.R., Phylogeny and biogeography of Juglans (Juglandaceae) based on matK and ITS sequence data, Am. J. Bot., 2000, vol. 87, pp. 872—882.

    Article  CAS  PubMed  Google Scholar 

  29. White, T.J., Bruns, T., Lee, S., and Taylor, J., Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, PCR Protoc.:Guide Methods Appl., 1990, vol. 18, pp. 315—322.

    Google Scholar 

  30. Bolger, A.M., Lohse, M., and Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, 2014, vol. 30, pp. 2114—2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aronesty, E., Comparison of sequencing utility programs, Open Bioinf. J., 2013, vol. 7, no. 1. https://doi.org/10.2174/18750362013070100011

  32. Okonechnikov, K., Golosova, O., Fursov, M., et al., Unipro UGENE: a unified bioinformatics toolkit, Bioinformatics, 2012, vol. 28, pp. 1166—1167.https://doi.org/10.1093/bioinformatics/bts091

  33. Kumar, S., Stecher, G., and Tamura, K., MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, pp. 1870—1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Clement, M., Posada, D.C.K.A., and Crandall, K.A., TCS: a computer program to estimate gene genealogies, Mol. Ecol., 2000, vol. 9, pp. 1657—1659.

    Article  CAS  PubMed  Google Scholar 

  35. Múrias dos Santos, A., Cabezas, M.P., Tavares, A.I., et al., tcsBU: a tool to extend TCS network layout and visualization, Bioinformatics, 2015, vol. 32, pp. 627—628. https://doi.org/10.1093/bioinformatics/btv636

    Article  CAS  PubMed  Google Scholar 

  36. Badaeva, E.D., Badaev, N.S., Gill, B.S., and Filatenko, A.A., Intraspecific karyotype divergence in Triticum araraticum (Poaceae), Plant Syst. Evol., 1994, vol. 192, pp. 117—145.https://doi.org/10.1007/BF00985912

    Article  Google Scholar 

  37. Amosova, A.V., Bolsheva, N.L., Samatadze, T.E., et al., Molecular cytogenetic analysis of Deschampsia antarctica Desv. (Poaceae), Maritime Antarctic, PLoS One, 2015, vol. 10, no. 9. e0138878. https://doi.org/10.1371/journal.pone.0138878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gerlach, W.L. and Bedbrook, J.R., Cloning and characterization of ribosomal RNA genes from wheat and barley, Nucleic Acids Res., 1979, vol. 7, pp. 1869—1885. PMID: 537913.https://doi.org/10.1093/nar/7.7.1869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gerlach, W.L. and Dyer, T.A., Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes, Nucleic Acids Res., 1980, vol. 8, pp. 4851—4855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Muravenko, O.V., Yurkevich, O.Y., Bolsheva, N.L., et al., Comparison of genomes of eight species of sections Linum and Adenolinum from the genus Linum based on chromosome banding, molecular markers and RAPD analysis, Genetica, 2009, vol. 135, pp. 245—255. https://doi.org/10.1007/s10709-008-9273-7

    Article  CAS  PubMed  Google Scholar 

  41. Loskutov, I.G., Interspecific crosses in the genus Avena L., Russ. J. Genet., 2001, vol. 37, no. 5, pp. 467—475. https://doi.org/10.1023/A:1016697812009

    Article  CAS  Google Scholar 

  42. Ladizinsky, G., A new species of Avena from Sicily, possibly the tetraploid progenitor of hexaploid oats, Genet. Res. Crop Evol., 1998, vol. 45, pp. 263—269.

    Article  Google Scholar 

  43. Jellen, E.N. and Ladizinsky, G., Giemsa C-banding in Avena insularis Ladizinsky, Genet. Res. Crop Evol., 2000, vol. 47, pp. 227—230.

    Article  Google Scholar 

  44. Zhou, X., Jellen, E.N., and Murphy, J.P., Progenitor germplasm of domesticated hexaploid oat, Crop Sci., 1999, vol. 39, pp. 1208—1214.

    Article  Google Scholar 

  45. Loskutov, I.G., On evolutionary pathways of Avena species, Genet. Res. Crop Evol., 2008, vol. 55, pp. 211—220.

    Article  Google Scholar 

  46. Irigoyen, M.L., Linares, C., Ferrer, E., and Fominaya, A., Fluorescence in situ hybridization mapping of Avena sativa L. cv. SunII and its monosomic lines using cloned repetitive DNA sequences, Genome, 2002, vol. 45, pp. 1230—1237.

    Article  CAS  PubMed  Google Scholar 

  47. Murai, K. and Tsunewaki, K., Chloroplast genome evolution in the genus Avena,Genetics, 1987, vol. 116, pp. 613—621.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rines, H.W., Gengenbach, B.G., Boylan, K.L., and Storey, K.K., Mitochondrial DNA diversity in oat cultivars and species, Crop Sci., 1988, vol. 28, pp. 171—176.

    Article  Google Scholar 

  49. Mogensen, H.L., The hows and whys of cytoplasmic inheritance in seed plants, Am. J. Bot., 1996, vol. 83, pp. 383–404.

    Article  Google Scholar 

  50. Peng, Y.Y., Wei, Y.M., Baum, B.R., et al., Phylogenetic investigation of Avena diploid species and the maternal genome donor of Avena polyploids, Taxon, 2010, vol. 59, pp. 1472—1482.

    Article  Google Scholar 

  51. Fu, Y.B., Oat evolution revealed in the maternal lineages of 25 Avena species, Sci. Rep., 2018, vol. 8, no. 1, p. 4252. https://doi.org/10.1038/s41598-018-22478-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kovarik, A., Matyasek, R., Lim, K.Y., et al., Concerted evolution of 18–5.8–26S rDNA repeats in Nicotiana allotetraploids, Biol. J. Linn. Soc., 2004, vol. 82, pp. 615—625.

    Article  Google Scholar 

  53. Ganley, A.R. and Kobayashi, T., Highly efficient concerted evolution in the ribosomal DNA repeats: total rDNA repeat variation revealed by whole-genome shotgun sequence data, Genome Res., 2007, vol. 17, pp. 184—191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Eickbush, T.H. and Eickbush, D.G., Finely orchestrated movements: evolution of the ribosomal RNA genes, Genetics, 2007, vol. 175, pp. 477—485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dadejová, M., Lim, K.Y., Soucková-Skalická, K., et al., Transcription activity of rRNA genes correlates with a tendency towards intergenomic homogenization in Nicotiana allotetraploids, New Phytol., 2007, vol. 174, pp. 658—668.

    Article  PubMed  Google Scholar 

  56. Sochorová, J., Coriton, O., Kuderová, A., et al., Gene conversion events and variable degree of homogenization of rDNA loci in cultivars of Brassica napus,Ann. Bot., 2016, vol. 119, pp. 13—26. https://doi.org/10.1093/aob/mcw187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lunerová, J., Renny-Byfield, S., Matyášek, R., et al., Concerted evolution rapidly eliminates sequence variation in rDNA coding regions but not in intergenic spacers in Nicotiana tabacum allotetraploid, Plant Syst. Evol., 2017, vol. 303, pp. 1043—1060.

    Article  Google Scholar 

  58. Peng, J.C. and Karpen, G.H., H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability, Nat. Cell Biol., 2007, vol. 9, pp. 25—35.

    Article  CAS  PubMed  Google Scholar 

  59. Gaillard, H. and Aguilera, A., Transcription as a threat to genome integrity, Ann. Rev. Biochem., 2016, vol. 85, pp. 291—317. https://doi.org/10.1146/annurev-biochem-060815-014908

    Article  CAS  PubMed  Google Scholar 

  60. Okamoto, H., Watanabe, T.A., and Horiuchi, T., Double rolling circle replication (DRCR) is recombinogenic, Genes Cells, 2011, vol. 16, pp. 503—513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Noto, T., Kataoka, K., Suhren, J.H., et al., Small-RNA-mediated genome-wide trans-recognition network in Tetrahymena DNA elimination, Mol. Cell, 2015, vol. 59, pp. 229—242. https://doi.org/10.1016/j.molcel.2015.05.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 17-00-00340 (17-00-00336, 17-00-00337, 17-00-00338).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to this work and are listed in alphabetical order.

Corresponding author

Correspondence to A. V. Rodionov.

Ethics declarations

The authors declare no conflict of interest. This article does not contain any studies carried out with humans or animals as objects.

Additional information

Translated by M. Bibov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodionov, A.V., Amosova, A.V., Krainova, L.M. et al. Phenomenon of Multiple Mutations in the 35S rRNA Genes of the C Subgenome of Polyploid Avena L.. Russ J Genet 56, 674–683 (2020). https://doi.org/10.1134/S1022795420060095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420060095

Keywords:

Navigation