Skip to main content
Log in

Polymorphisms of Intracellular Cholesterol Transporters Genes: Relationship to Blood Lipid Levels, Carotid Intima-Media Thickness, and the Development of Coronary Heart Disease

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The influence of single nucleotide polymorphism (SNP) of genes encoding intracellular cholesterol transporters, such as rs1883025 of ABCA1, rs217406 of NPC1L1, and rs881844 of STARD3, on blood lipid levels, carotid intima-media thickness (CIMT), and the risk of coronary heart disease (CHD) has been studied. SNP genotyping was performed using the MassARRAY 4 system. The effects of polymorphic genes on transformed values of blood lipids and CIMT were evaluated by linear regression analysis separately in men and women and adjusted for age and body mass index. SNP rs881844 of the STARD3 gene was associated with decreased risk of CHD in men (OR = 0.67, 95% CI 0.46–0.96, P = 0.02). In women, SNP rs1883025 of ABCA1 showed an association with decreased risk of CHD (OR = 0.65, 95% CI 0.44–0.95, P = 0.02). In men, SNP rs1883025 of the ABCA1 gene was associated with the levels of low density lipoprotein cholesterol (P = 0.05), whereas SNP rs217406 was associated with triglyceride levels (P = 0.02). Polymorphisms such as rs217406 of NPC1L1 and rs881844 of STARD3 in women and rs1883025 of ABCA1 in men were associated with CIMT. The present study has identified for the first time that rs1883025 of ABCA1 and rs881844 of STARD3 are associated with susceptibility to coronary heart disease and showed clear sex-specific differences in the associations between the genes and the studied phenotypes. Thus, polymorphic variants of genes encoding intracellular cholesterol transporters are potentially involved in the formation of the atherosclerotic process through the mechanisms that seem to be not directly related to the metabolism of cholesterol and cholesterol of low density lipoproteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Keenan, T.E. and Rader, D.J., Genetics of lipid traits and relationship to coronary artery disease, Curr. Cardiol. Rep., 2013, vol. 15, no. 9, p. 396. https://doi.org/10.1007/s11886-013-0396-9

    Article  PubMed  Google Scholar 

  2. Khera, A.V. and Kathiresan, S., Genetics of coronary artery disease: discovery, biology and clinical translation, Nat. Rev. Genet., 2017, vol. 18, no. 6, p. 331. https://doi.org/10.1038/nrg.2016.160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eklund, C., Friberg, P., and Gan, L.M., High-resolution radial artery intima-media thickness and cardiovascular risk factors in patients with suspected coronary artery disease: comparison with common carotid artery intima-media thickness, Atherosclerosis, 2012, vol. 221, no. 1, pp. 118—123. https://doi.org/10.1016/j.atherosclerosis.2011.12.035

    Article  CAS  PubMed  Google Scholar 

  4. Zhuravleva, L.V. and Lopina, N.A., Importance of the intima media thickness of the complex carotid arteries in predicting atherosclerotic lesions of the coronary vessels, Nauchn. Result.,Med. Farmatsiya, 2017, vol. 3, no. 10, pp. 41—50. https://doi.org/10.18413/2313-8955-2017-3-3-41-50

    Article  Google Scholar 

  5. Nikpay, M., Stewart, A.F., McPherson, R., et al., Acomprehensive 1000 genomes–based genome-wide association meta-analysis of coronary artery disease, Nat. Genet., 2015, vol. 47, no. 10, p. 1121. https://doi.org/10.1038/ng.3396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McPherson, R. and Tybjaerg-Hansen, A., Genetics of coronary artery disease, Circ. Res., 2016, vol. 118, no. 4, pp. 564—578. https://doi.org/10.1161/CIRCRESAHA.115.306566

    Article  CAS  PubMed  Google Scholar 

  7. Kathiresan, S., Willer, C., Peloso, G., et al., Common variants at 30 loci contribute to polygenic dyslipidemia, Nat. Genet., 2009, vol. 41, no. 1, p. 56. https://doi.org/10.1038/ng.291

    Article  CAS  PubMed  Google Scholar 

  8. Teslovich, T.M., Musunuru, K., Smith, A.V., et al., Biological, clinical and population relevance of 95 loci for blood lipids, Nature, 2010, vol. 466, no. 7307, p. 707. https://doi.org/10.1038/nature09270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dumitrescu, L., Cara, L., Taylor, K., et al., Genetic determinants of lipid traits in diverse populations from the population architecture using genomics and epidemiology (PAGE) study, PLoS Genet., 2011, vol. 7, no. 6. e1002138. https://doi.org/10.1371/journal.pgen.1002138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Willer, C.J., Schmidt, E.M., Sengupta, S., et al., Discovery and refinement of loci associated with lipid levels, Nat. Genet., 2013, vol. 45, no. 11, p. 1274. https://doi.org/10.1038/ng.2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Breslow, J.L., Genetics of lipoprotein abnormalities associated with coronary heart disease susceptibility, Ann. Rev. Genet., 2000, vol. 34, no. 1, pp. 233—254. https://doi.org/10.1146/annurev.genet.34.1.233

    Article  CAS  PubMed  Google Scholar 

  12. Borinskaya, S.A., Kal’ina, N.R., Sanina, E.D., et al., Polymorphism of the apolipoprotein E gene (APOE) in the populations of Russia and neighboring countries, Russ. J. Genet., 2007, vol. 43, no. 10, pp. 1201—1207. https://doi.org/10.1134/S1022795407100158

    Article  CAS  Google Scholar 

  13. Voevoda, M.I., Kulikov, I.V., Shakhtshneider, E.V., et al., The spectrum of mutations in the low-density lipoprotein receptor gene in the Russian population, Russ. J. Genet., 2008, vol. 44, no. 10, pp. 1191—1194. https://doi.org/10.1134/S1022795408100074

    Article  CAS  Google Scholar 

  14. Bushueva, O.Y., Bulgakova, I.V., Ivanov, V.P., et al., Association of flavin monooxygenase gene E158K polymorphism with chronic heart disease risk, Bull. Exp. Biol. Med., 2015, vol. 159, no. 6, pp. 776—778. https://doi.org/10.1007/s10517-015-3073-8

    Article  CAS  PubMed  Google Scholar 

  15. Zvyagina, M.V., Mal’, G.S., Bushueva, O.Yu., et al., Estimating the effectiveness of hypolipidemic therapy with rosuvastatin in patients with coronary heart disease depending on the genotype of lipoprotein lipase, Eksp. Klin. Farmakol., 2016, vol. 79, no. 1, pp. 15—19.

    CAS  PubMed  Google Scholar 

  16. Polonikov, A., Kharchenko, A., Bykanova, M., et al., Polymorphisms of CYP2C8, CYP2C9 and CYP2C19 and risk of coronary heart disease in Russian population, Gene, 2017, vol. 627, pp. 451—459. https://doi.org/10.1016/j.gene.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  17. Sirotina, S., Ponomarenko, I., Kharchenko, A., et al., A novel polymorphism in the promoter of the CYP4A11 gene is associated with susceptibility to coronary artery disease, Dis. Markers, 2018, vol. 2018. https://doi.org/10.1155/2018/5812802

    Article  Google Scholar 

  18. Solé, X., Guinó, E., Valls, J., et al., SNPStats: a web tool for the analysis of association studies, Bioinformatics, 2006, vol. 22, no. 15, pp. 1928—1929. https://doi.org/10.1093/bioinformatics/btl268

    Article  CAS  PubMed  Google Scholar 

  19. Luciani, M.F., Denizot, F., Savary, S., et al., Cloning of two novel ABC transporters mapping on human chromosome 9, Genomics, 1994, vol. 21, no. 1, pp. 150—159. https://doi.org/10.1006/geno.1994.1237

    Article  CAS  PubMed  Google Scholar 

  20. Krimbou, L., Denis, M., Haidar, B., et al., Molecular interactions between apoE and ABCA1 impact on apoE lipidation, J. Lipid Res., 2004, vol. 45, no. 5, pp. 839—848. https://doi.org/10.1194/jlr.M300418-JLR200

    Article  CAS  PubMed  Google Scholar 

  21. Marcil, M., Brooks-Wilson, A., Clee, S., et al., Mutations in the ABC 1 gene in familial HDL deficiency with defective cholesterol efflux, Lancet, 1999, vol. 354, no. 9187, pp. 1341—1346. https://doi.org/10.1016/S0140-6736(99)07026-9

    Article  CAS  PubMed  Google Scholar 

  22. Frikke-Schmidt, R., Sethi, A.A., Remaley, A.T., et al., Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease, JAMA, 2008, vol. 299, no. 21, pp. 2524—2532. https://doi.org/10.1001/jama.299.21.2524

    Article  CAS  PubMed  Google Scholar 

  23. Clee, S.M., Zwinderman, A.H., Engert, J.C., et al., Common genetic variation in ABCA1 is associated with altered lipoprotein levels and a modified risk for coronary artery disease, Circulation, 2001, vol. 103, no. 9, pp. 1198—1205. https://doi.org/10.1161/01.CIR.103.9.1198

    Article  CAS  PubMed  Google Scholar 

  24. Wang, K., Haitao, Z., Frank, D.M., et al., Examination of genetic variants influencing lipid traits in pediatric populations, J. Pediatric Genet., 2012, vol. 1, no. 2, pp. 85—98. https://doi.org/10.3233/PGE-2012-016

    Article  Google Scholar 

  25. Garcia-Calvo, M., Lisnock, J.M., Bull, H.G., et al., The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1), Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 23, pp. 8132—8137. https://doi.org/10.1073/pnas.0500269102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Polisecki, E., Peter, I., Simon, J.S., et al., Genetic variation at the NPC1L1 gene locus, plasma lipoproteins, and heart disease risk in the elderly, J. Lipid Res., 2010, vol. 51, no. 5, pp. 1201—1207. https://doi.org/10.1194/jlr.P001172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lauridsen, B.K., Stender, S., Frikke-Schmidt, R., et al., Genetic variation in the cholesterol transporter NPC1L1, ischaemic vascular disease, and gallstone disease, Eur. Heart J., 2015, vol. 36, no. 25, pp. 1601—1608. https://doi.org/10.1093/eurheartj/ehv108

    Article  CAS  PubMed  Google Scholar 

  28. Chen, C.W., Hwang, J.J., Tsai, C.T., et al., The g.762T>C polymorphism of the NPC1L1 gene is common in Chinese and contributes to a higher promoter activity and higher serum cholesterol levels, J. Hum. Genet., 2009, vol. 54, no. 4, p. 242. https://doi.org/10.1038/jhg.2009.18

    Article  CAS  PubMed  Google Scholar 

  29. Myocardial Infarction Genetics Consortium Investigators, Inactivating mutations in NPC1L1 and protection from coronary heart disease, N. Engl. J. Med., 2014, vol. 371, no. 22, pp. 2072—2082. https://doi.org/10.1056/NEJMoa1405386

  30. Muendlein, A., Leiherer, A., Saely, Ch.H., et al., Common single nucleotide polymorphisms at the NPC1L1 gene locus significantly predict cardiovascular risk in coronary patients, Atherosclerosis, 2015, vol. 242, no. 1, pp. 340—345. https://doi.org/10.1016/j.atherosclerosis.2015.07.011

    Article  CAS  PubMed  Google Scholar 

  31. Wilhelm, L.P., Wendling, C., Védie, B., et al., STARD3 mediates endoplasmic reticulum-to-endosome cholesterol transport at membrane contact sites, EMBO J., 2017, vol. 36, no. 10, pp. 1412—1433. https://doi.org/10.15252/embj.201695917

    Article  CAS  Google Scholar 

  32. Zhang, M., Liu, P., Dwyer, N.K., et al., MLN64 mediates mobilization of lysosomal cholesterol to steroidogenic mitochondria, J. Biol. Chem., 2002, vol. 277, no. 36, pp. 33300—33310. https://doi.org/10.1074/jbc.M200003200

    Article  CAS  PubMed  Google Scholar 

  33. Qiu, Y., Zhang, Z.Y., Du, W.D., et al., Association analysis of ERBB2 amplicon genetic polymorphisms and STARD3 expression with risk of gastric cancer in the Chinese population, Gene, 2014, vol. 535, no. 2, pp. 225—232. https://doi.org/10.1016/j.gene.2013.11.030

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Churilin.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by A. Kashevarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Churilin, M.I., Kononov, S.I., Luneva, Y.V. et al. Polymorphisms of Intracellular Cholesterol Transporters Genes: Relationship to Blood Lipid Levels, Carotid Intima-Media Thickness, and the Development of Coronary Heart Disease. Russ J Genet 56, 234–241 (2020). https://doi.org/10.1134/S1022795420020040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420020040

Keywords:

Navigation