Skip to main content

Advertisement

Log in

Candidate SNP Markers of Atherosclerosis That May Significantly Change the Affinity of the TATA-Binding Protein for the Human Gene Promoters

  • MATHEMATICAL MODELS AND METHODS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Atherosclerosis (AS) and AS-related pathologies such as coronary heart disease, myocardial infarction, angina pectoris, and stroke are the leading causes of death in the world. The atherogenesis can be influenced by many factors, in particular, overweight, hypertension, diabetes, hyperlipoproteinemia, and other diseases in anamnesis, as well as genetic predisposition, which may be due to single nucleotide polymorphisms (SNPs) in some cases. In this work, we studied only those regions of promoters of the human protein-coding genes where SNP markers of changes in the affinity of the TATA-binding protein (TBP) for these promoters have already been associated with the atherosclerosis-related pathologies. As a result, within the dbSNP database, we found those unannotated SNPs which change such affinity just as the known biomedical SNP markers do here (according to the predictions made by our Web service SNP_TATA_Z-tester, http://wwwmgs.bionet.nsc.ru/cgi-bin/mgs/tatascan_fox/start.pl). For example, the known SNP marker rs35036378 of the high risks of the primary pT1 tumor reduces the TBP affinity for the ESR2 gene promoter and, thus, the estrogen receptor β abundancy in blood, which is a known physiological marker of calcification of blood vessels in atherogenesis. Near this known SNP marker, we found an unannotated SNP rs766797386, which can also reduce the TBP affinity for the same promoter and, thus, decrease the abundance of the estrogen receptor β in blood. Thus, we propose rs766797386 as a candidate SNP marker for accelerated atherogenesis due to calcification of blood vessels. The possibility of using a diet of natural food with high abundance of calcium (Ca), which is recommended by nutritionists to slow down calcification in the case when individuals have SNP markers of accelerated calcification, is discussed in contrast to the use of Ca-enriched nutritional supplements that can cause the opposite effect. In the same way, a total of 33 candidate SNP markers were predicted and discussed to accelerate or slow down atherogenesis. After clinical verification, the candidate SNP markers predicted by this work can help those who would like to slow down atherogenesis through lifestyle corrections using their genome sequencing data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Barquera, S., Pedroza-Tobias, A., Medina, C., et al., Global overview of the epidemiology of atherosclerotic cardiovascular disease, Arch. Med. Res., 2015, vol. 46, no. 5, pp. 328—338. https://doi.org/10.1016/j.arcmed.2015.06.006

    Article  PubMed  Google Scholar 

  2. Napoli, C., D’Armiento, F.P., Mancini, F.P., et al., Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia: intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions, J. Clin. Invest., 1997, vol. 100, no. 11, pp. 2680—2690. https://doi.org/10.1172/JCI119813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li, A.C. and Glass, C.K., The macrophage foam cell as a target for therapeutic intervention, Nat. Med., 2002, vol. 8, no. 11, pp. 1235—1242. https://doi.org/10.1038/nm1102-1235

    Article  CAS  PubMed  Google Scholar 

  4. Lusis, A.J., Atherosclerosis, Nature, 2000, vol. 407, no. 6801, pp. 233—241. https://doi.org/10.1038/35025203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hirayama, S., Soda, S., Ito, Y., et al., Circadian change of serum concentration of small dense LDL-cholesterol in type 2 diabetic patients, Clin. Chim. Acta., 2010, vol. 411, nos. 3—4, pp. 253—257. https://doi.org/10.1016/j.cca.2009.11.017

    Article  CAS  PubMed  Google Scholar 

  6. Lathe, R., Sapronova, A., and Kotelevtsev, Y., Atherosclerosis and Alzheimer—diseases with a common cause? Inflammation, oxysterols, vasculature, BMC Geriatr., 2014, vol. 14, p. 36. https://doi.org/10.1186/1471-2318-14-36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Glass, C.K. and Witztum, J.L., Atherosclerosis: the road ahead, Cell, 2001, vol. 104(4), pp. 503—516. https://doi.org/10.1016/S0092-8674(01)00238-0

    Article  CAS  PubMed  Google Scholar 

  8. Telenti, A., Pierce, L.C., Biggs, W.H., et al., Deep sequencing of 10 000 human genomes, Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, no. 42, pp. 11901—11906. https://doi.org/10.1073/pnas.1613365113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sherry, S.T., Ward, M.H., Kholodov, M., et al., dbSNP: the NCBI database of genetic variation, Nucleic Acids Res., 2001, vol. 29, no. 1, pp. 308—311. https://doi.org/10.1093/nar/29.1.308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Varzari, A., Deyneko, I.V., Tudor, E., and Turcan, S., Polymorphisms of glutathione S-transferase and methylenetetrahydrofolate reductase genes in Moldavian patients with ulcerative colitis: genotype—phenotype correlation, Meta Gene, 2016, vol. 7, pp. 76—82. https://doi.org/10.1016/j.mgene.2015.12.002

    Article  PubMed  Google Scholar 

  11. Trovato, G.M., Sustainable medical research by effective and comprehensive medical skills: overcoming the frontiers by predictive, preventive and personalized medicine, EPMA J., 2014, vol. 5, no. 1, p. 14. https://doi.org/10.1186/1878-5085-5-14

    Article  PubMed  PubMed Central  Google Scholar 

  12. Amberger, J.S., Bocchini, C.A., Schiettecatte, F., et al., OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders, Nucleic Acids Res., 2015, vol. 43, pp. D789—D798. https://doi.org/10.1093/nar/gku1205

    Article  CAS  PubMed  Google Scholar 

  13. Zerbino, D.R., Wilder, S.P., Johnson, N., et al., The Ensembl Regulatory Build, Genome Biol., 2015, vol. 16, p. 56. https://doi.org/10.1186/s13059-015-0621-5

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ponomarenko, M., Mironova, V., Gunbin, K., and Savinkova, L., Hognessbox, in Brenner’s Encyclopedia of Genetics, San Diego: Academic, 2013, vol. 3, pp. 491—494. https://doi.org/10.1016/B978-0-12-374984-0.00720-8

    Google Scholar 

  15. Martianov, I., Viville, S., and Davidson, I., RNA polymerase II transcription in murine cells lacking the TATA binding protein, Science, 2002, vol. 298, no. 5595, pp. 1036—1039. https://doi.org/10.1126/science.1076327

    Article  CAS  PubMed  Google Scholar 

  16. Mogno, I., Vallania, F., Mitra, R.D., and Cohen, B.A., TATA is a modular component of synthetic promoters, Genome Res., 2010, vol. 20, no. 10, pp. 1391—1397. https://doi.org/10.1101/gr.106732.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ponomarenko, M.P., Rasskazov, D.A., Arkova, O.V., et al., How to use SNP_TATA_Comparator to find a significant change in gene expression caused by the regulatory SNP of this gene’s promoter via a change in affinity of the TATA-binding protein for this promoter, Biomed. Res. Int., 2015, vol. 2015, p. 359835. https://doi.org/10.1155/2015/359835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arkova, O.V., Ponomarenko, M.P., Rasskazov, D.A., et al., Obesity-related known and candidate SNP markers can significantly change affinity of TATA-binding protein for human gene promoters, BMC Genomics, 2015, vol. 16, suppl. 13, p. S5. https://doi.org/10.1186/1471-2164-16-S13-S5

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chadaeva, I.V., Ponomarenko, M.P., Rasskazov, D.A., et al., Candidate SNP markers of aggressiveness-related complications and comorbidities of genetic diseases are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters, BMC Genomics, 2016, vol. 17, suppl. 14, p. 995. https://doi.org/10.1186/s12864-016-3353-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chadaeva, I.V., Ponomarenko, M.P., Rasskazov, D.A., et al., Candidate SNP markers of reproductive potential are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters, BMC Genomics, 2018, vol. 19, suppl. 3, p. 0. https://doi.org/10.1186/s12864-018-4478-3

  21. Ponomarenko, M., Arkova, O., Rasskazov, D., et al., Candidate SNP markers of gender-biased autoimmune complications of monogenic diseases are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters, Front. Immunol., 2016, vol. 7, p. 130. https://doi.org/10.3389/fimmu.2016.00130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ponomarenko, P., Rasskazov, D., Suslov, V., et al., Candidate SNP markers of chronopathologies are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters, BioMed. Res. Int., 2016, vol. 2016, p. 8642703. https://doi.org/10.1155/2016/8642703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ponomarenko, M., Arkova, O., Rasskazov, D., et al., Candidate SNP markers of familial and sporadic Alzheimer’s diseases are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters, Front. Aging Neurosci., 2017, vol. 9, p. 231. https://doi.org/10.3389/fnagi.2017.00231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Plengpanich, W., Le Goff, W., Poolsuk, S., et al., CETP deficiency due to a novel mutation in the CETP gene promoter and its effect on cholesterol efflux and selective uptake into hepatocytes, Atherosclerosis, 2011, vol. 216, no. 2, pp. 370—373. https://doi.org/10.1016/j.atherosclerosis.2011.01.051

    Article  CAS  PubMed  Google Scholar 

  25. Philips, S., Richter, A., Oesterreich, S., et al., Functional characterization of a genetic polymorphism in the promoter of the ESR2 gene, Horm. Cancer, 2012, vol. 3, no. 1—2, pp. 37—43. https://doi.org/10.1007/s12672-011-0086-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McRobb, L.S., McGrath, K.C.Y., Tsatralis, T., et al., Estrogen receptor control of atherosclerotic calcification and smooth muscle cell osteogenic differentiation, Arterioscler. Thromb. Vasc. Biol., 2017, vol. 37, no. 6, pp. 1127—1137. https://doi.org/10.1161/atvbaha.117.309054

    Article  CAS  PubMed  Google Scholar 

  27. Anderson, J.J., Kruszka, B., Delaney, J.A., et al., Calcium intake from diet and supplements and the risk of coronary artery calcification and its progression among older adults: 10-year follow-up of the Multi-Ethnic Study of Atherosclerosis (MESA), J. Am. Heart Assoc., 2016, vol. 5, no. 10. e003815. https://doi.org/10.1161/jaha.116.003815

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ceneri, N., Zhao, L., Young, B.D., et al., Rac2 modulates atherosclerotic calcification by regulating macrophage interleukin-1β production, Arterioscler. Thromb. Vasc. Biol., 2017, vol. 37, no. 2, pp. 328—340. https://doi.org/10.1161/atvbaha.116.308507

    Article  CAS  PubMed  Google Scholar 

  29. Landrum, M.J., Lee, J.M., Riley, G.R., et al., ClinVar: public archive of relationships among sequence variation and human phenotype, Nucleic Acids Res., 2014, vol. 42, pp. D980—D985. https://doi.org/10.1093/nar/gkt1113

    Article  CAS  PubMed  Google Scholar 

  30. Cao, W., Ning, J., Yang, X., and Liu, Z., Excess exposure to insulin is the primary cause of insulin resistance and its associated atherosclerosis, Curr. Mol. Pharmacol., 2011, vol. 4, no. 3, pp. 154—166. https://doi.org/10.2174/1874467211104030154

    Article  CAS  PubMed  Google Scholar 

  31. Liu, Z., Zhou, Z., Huang, G., et al., Long-term effects intensive medical therapy on the development and progression of subclinical atherosclerosis and the metabolic syndrome in Chinese patients with type 2 diabetes mellitus, Medicine (Baltimore), 2016, vol. 95, no. 46. e5201. https://doi.org/10.1097/md.0000000000005201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Niemann, S., Broom, W.J., and Brown, R.H. Jr., Analysis of a genetic defect in the TATA box of the SOD1 gene in a patient with familial amyotrophic lateral sclerosis, Muscle Nerve, 2007, vol. 36, no. 5, pp. 704—707. https://doi.org/10.1002/mus.20855

    Article  CAS  PubMed  Google Scholar 

  33. Rafael, H., David, J.O., and Vilca, A.S., Etiology and treatment of amyotrophic lateral sclerosis, Am. J. Neurodegener. Dis., 2017, vol. 6, no. 1, pp. 1—8.

    PubMed  PubMed Central  Google Scholar 

  34. Savinkova, L., Drachkova, I., Arshinova, T., et al., An experimental verification of the predicted effects of promoter TATA-box polymorphisms associated with human diseases on interactions between the TATA boxes and TATA-binding protein, PLoS One, 2013, vol. 8, no. 2. e54626. https://doi.org/10.1371/journal.pone.0054626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Watanabe, M., Zingg, B.C., and Mohrenweiser, H.W., Molecular analysis of a series of alleles in humans with reduced activity at the triosephosphate isomerase locus, Am. J. Hum. Genet., 1996, vol. 58, no. 2, pp. 308—316.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Vives-Corrons, J.L., Rubinson-Skala, H., Mateo, M., et al., Triosephosphate isomerase deficiency with hemolytic anemia and severe neuromuscular disease: familial and biochemical studies of a case found in Spain, Hum. Genet., 1978, vol. 42, no. 2, pp. 171—180.

    Article  CAS  PubMed  Google Scholar 

  37. Balla, G., Vercellotti, G., Eaton, J.W., and Jacob, H.S., Heme uptake by endothelium synergizes polymorphonuclear granulocyte-mediated damage, Trans. Assoc. Am. Physicians, 1990, vol. 103, pp. 174—179.

    CAS  PubMed  Google Scholar 

  38. Kioumourtzoglou, M.A., Seals, R.M., Gredal, O., et al., Cardiovascular disease and diagnosis of amyotrophic lateral sclerosis: a population based study, Amyotroph. Lateral Scler. Frontotemporal. Degener., 2016, vol. 17, nos. 7—8, pp. 548—554. https://doi.org/10.1080/21678421.2016.1208247

    Article  PubMed  PubMed Central  Google Scholar 

  39. Arnaud, E., Barbalat, V., Nicaud, V., et al., Polymorphisms in the 5' regulatory region of the tissue factor gene and the risk of myocardial infarction and venous thromboembolism: the ECTIM and PATHROS studies, Arterioscler. Thromb. Vasc. Biol., 2000, vol. 20, no. 3, pp. 892—898. https://doi.org/10.1161/01.atv.20.3.892

    Article  CAS  PubMed  Google Scholar 

  40. Hasenstab, D., Lea, H., Hart, C.E., et al., Tissue factor overexpression in rat arterial neointima models thrombosis and progression of advanced atherosclerosis, Circulation, 2000, vol. 101, no. 22, pp. 2651—2657. https://doi.org/10.1161/01.cir.101.22.2651

    Article  CAS  PubMed  Google Scholar 

  41. Kavlie, A., Hiltunen, L., Rasi, V., and Prydz, H., Two novel mutations in the human coagulation factor VII promoter, Thromb. Haemost., 2003, vol. 90, no. 2, pp. 194—205. https://doi.org/10.1160/th02-09-0050

    Article  CAS  PubMed  Google Scholar 

  42. Zacharski, L.R., Delprete, S.A., Kisiel, W., et al., Atherosclerosis and coronary bypass surgery in hereditary factor VII deficiency, Am. J. Med., 1988, vol. 84, no. 5, pp. 955—959. https://doi.org/10.1016/0002-9343(88)90078-2

    Article  CAS  PubMed  Google Scholar 

  43. Martiney, J.A., Cerami, A., and Slater, A.F., Inhibition of hemozoin formation in Plasmodium falciparum trophozoite extracts by heme analogs: possible implication in the resistance to malaria conferred by the beta-thalassemia trait, Mol. Med., 1996, vol. 2, no. 2, pp. 236—246.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Wang, H., Luo, W., Wang, J., et al., Paradoxical protection from atherosclerosis and thrombosis in a mouse model of sickle cell disease, Br. J. Haematol., 2013, vol. 162, no. 1, pp. 120—129. https://doi.org/10.1111/bjh.12342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Starodubtseva, N.L., Sobolev, V.V., Soboleva, A.G., et al., Genes expression of metalloproteinases (MMP-1, MMP-2, MMP-9, and MMP-12) associated with psoriasis, Russ. J. Genet., 2011, vol. 47, no. 9, article 1117. https://doi.org/10.1134/S102279541109016X

    Article  CAS  Google Scholar 

  46. Hunninghake, G.M., Cho, M.H., Tesfaigzi, Y., et al., MMP12, lung function, and COPD in high-risk populations, N. Engl. J. Med., 2009, vol. 361, no. 27, pp. 2599—2608. https://doi.org/10.1056/nejmoa0904006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Manetti, M., Ibba-Manneschi, L., Fatini, C., et al., Association of a functional polymorphism in the matrix metalloproteinase-12 promoter region with systemic sclerosis in an Italian population, J. Rheumatol., 2010, vol. 37, no. 9, pp. 1852—1857. https://doi.org/10.3899/jrheum.100237

    Article  CAS  PubMed  Google Scholar 

  48. Motterle, A., Xiao, Q., Kiechl, S., et al., Influence of matrix metalloproteinase-12 on fibrinogen level, Atherosclerosis, 2012, vol. 220, no. 2, pp. 351—354. https://doi.org/10.1016/j.atherosclerosis.2011.11.003

    Article  CAS  PubMed  Google Scholar 

  49. Boldt, A., Culpi, L., Tsuneto, L., et al., Diversity of the MBL2 gene in various Brazilian populations and the case of selection at the mannose-binding lectin locus, Hum. Immunol., 2006, vol. 67, no. 9, pp. 722—734. https://doi.org/10.1016/j.humimm.2006.05.009

    Article  CAS  PubMed  Google Scholar 

  50. Sziller, I., Babula, O., Hupuczi, P., et al., Mannose-binding lectin (MBL) codon 54 gene polymorphism protects against development of pre-eclampsia, HELLP syndrome and pre-eclampsia-associated intrauterine growth restriction, Mol. Hum. Reprod., 2007, vol. 13, no. 4, pp. 281—285. https://doi.org/10.1093/molehr/gam003

    Article  CAS  PubMed  Google Scholar 

  51. Cervera, A., Planas, A.M., Justicia, C., et al., Genetically-defined deficiency of mannose-binding lectin is associated with protection after experimental stroke in mice and outcome in human stroke, PLoS One, 2010, vol. 5, no. 2, p. e8433. https://doi.org/10.1371/journal.pone.0008433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Losin, I.E., Shakhnovich, R.M., Zykov, K.A., and Ruda, M.Ya., Cardiovascular diseases and the mannose-binding lectin, Kardiologiya, 2014, vol. 54, no. 3, pp. 64—70.

    Article  CAS  PubMed  Google Scholar 

  53. Saita, E., Kondo, K., and Momiyama, Y., Anti-inflammatory diet for atherosclerosis and coronary artery disease: antioxidant foods, Clin. Med. Insights Cardiol., 2015, vol. 8, suppl. 3, pp. 61—65. https://doi.org/10.4137/cmc.S17071

    Article  PubMed  PubMed Central  Google Scholar 

  54. Burgner, D., Rockett, K., Ackerman, H., et al., Haplotypic relationship between SNP and microsatellite markers at the NOS2A locus in two populations, Genes Immun., 2003, vol. 4, no. 7, pp. 506—514. https://doi.org/10.1038/sj.gene.6364022

    Article  CAS  PubMed  Google Scholar 

  55. Clark, I.A., Rockett, K.A., and Burgner, D., Genes, nitric oxide and malaria in African children, Trends Parasitol., 2003, vol. 19, no. 8, pp. 335—337. https://doi.org/10.1016/S1471-4922(03)00147-8

    Article  CAS  PubMed  Google Scholar 

  56. Gonzalez-Martinez, J.A., Moddel, G., Ying, Z., et al., Neuronal nitric oxide synthase expression in resected epileptic dysplastic neocortex, J. Neurosurg., 2009, vol. 110, no. 2, pp. 343—349. https://doi.org/10.3171/2008.6.17608

    Article  PubMed  Google Scholar 

  57. Zhao, J.F., Shyue, S.K., Lin, S.J., et al., Excess nitric oxide impairs LXR(α)-ABCA1-dependent cholesterol efflux in macrophage foam cells, J. Cell Physiol., 2014, vol. 229, no. 1, pp. 117—125. https://doi.org/10.1002/jcp.24429

    Article  CAS  PubMed  Google Scholar 

  58. Matsunaga, A., Sasaki, J., Han, H., et al., Compound heterozygosity for an apolipoprotein A1 gene promoter mutation and a structural nonsense mutation with apolipoprotein A1 deficiency, Arterioscler. Thromb. Vasc. Biol., 1999, vol. 19, no. 2, pp. 348—355. https://doi.org/10.1161/01.atv.19.2.348

    Article  CAS  PubMed  Google Scholar 

  59. van Capelleveen, J.C., Kootte, R.S., Hovingh, G.K., and Bochem, A.E., Myocardial infarction in a 36-year-old man with combined ABCA1 and APOA-1 deficiency, J. Clin. Lipidol., 2015, vol. 9, no. 3, pp. 396—399. https://doi.org/10.1016/j.jacl.2015.01.006

    Article  PubMed  Google Scholar 

  60. Parolini, C., Bjorndal, B., Busnelli, M., et al., Effect of dietary components from Antarctic krill on atherosclerosis in apoE-deficient mice, Mol. Nutr. Food Res., 2017, vol. 61, no. 12. https://doi.org/10.1002/mnfr.201700098

    Article  Google Scholar 

  61. Nalls, M.A., Wilson, J.G., Patterson, N.J., et al., Admixture mapping of white cell count: genetic locus responsible for lower white blood cell count in the Health ABC and Jackson Heart studies, Am. J. Hum. Genet., 2008, vol. 82, no. 1, pp. 81—87. https://doi.org/10.1016/j.ajhg.2007.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Michon, P., Woolley, I., Wood, E.M., et al., Duffy-null promoter heterozygosity reduces DARC expression and abrogates adhesion of the P. vivax ligand required for blood-stage infection, FEBS Lett., 2001, vol. 495, nos. 1—2, pp. 111—114. https://doi.org/10.1016/S0014-5793(01)02370-5

    Article  CAS  PubMed  Google Scholar 

  63. Wan, W., Liu, Q., Lionakis, M.S., et al., Atypical chemokine receptor 1 deficiency reduces atherogenesis in ApoE-knockout mice, Cardiovasc. Res., 2015, vol. 106, no. 3, pp. 478—487. https://doi.org/10.1093/cvr/cvv124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang, Y., Proenca, R., Maffei, M., et al., Positional cloning of the mouse obese gene and its human homologue, Nature, 1994, vol. 372, no. 6505, pp. 425—432. https://doi.org/10.1038/372425a0

    Article  CAS  PubMed  Google Scholar 

  65. Skrypnik, K., Suliburska, J., Skrypnik, D., et al., The genetic basis of obesity complications, Acta Sci. Pol. Technol. Aliment., 2017, vol. 16, no. 1, pp. 83—91. https://doi.org/10.17306/j.afs.2017.0442

    Article  CAS  PubMed  Google Scholar 

  66. Chiba, T., Shinozaki, S., Nakazawa, T., et al., Leptin deficiency suppresses progression of atherosclerosis in apoE-deficient mice, Atherosclerosis, 2008, vol. 196, no. 1, pp. 68—75. https://doi.org/10.1016/j.atherosclerosis.2007.01.040

    Article  CAS  PubMed  Google Scholar 

  67. Jun, J.Y., Ma, Z., Pyla, R., and Segar, L., Leptin treatment inhibits the progression of atherosclerosis by attenuating hypercholesterolemia in type 1 diabetic Ins2(+/Akita):apoE(-/-) mice, Atherosclerosis, 2012, vol. 225, no. 2, pp. 341—347. https://doi.org/10.1016/j.atherosclerosis.2012.10.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hubbard, R., Kosch, C.L., Sanchez, A., et al., Effect of dietary protein on serum insulin and glucagon levels in hyper- and normocholesterolemic men, Atherosclerosis, 1989, vol. 76, no. 1, pp. 55—61. https://doi.org/10.1016/0021-9150(89)90193-7

    Article  CAS  PubMed  Google Scholar 

  69. Suslov, V.V., Ponomarenko, P.M., Ponomarenko, M.P., et al., TATA box polymorphisms in genes of commercial and laboratory animals and plants associated with selectively valuable traits, Russ. J. Genet., 2010, vol. 46, no. 4, pp. 394—403. https://doi.org/10.1134/S1022795410040022

    Article  CAS  Google Scholar 

  70. Hahn, S., Buratowski, S., Sharp, P.A., and Guarente, L., Yeast TATA-binding protein TFIID binds to TATA elements with both consensus and nonconsensus DNA sequences, Proc. Natl. Acad. Sci. U.S.A., 1989, vol. 86, no. 15, pp. 5718—5722. https://doi.org/10.1073/pnas.86.15.5718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ponomarenko, P.M., Savinkova, L., Drachkova, I., et al., A step-by-step model of TBP/TATA box binding allows predicting human hereditary diseases by single nucleotide polymorphism, Dokl. Biochem. Biophys., 2008, vol. 419, no. 1, pp. 88—92. https://doi.org/10.1134/S1607672908020117

    Article  CAS  PubMed  Google Scholar 

  72. Bucher, P., Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences, J. Mol. Biol., 1990, vol. 212, no. 4, pp. 563—578. https://doi.org/10.1016/0022-2836(90)90223-9

    Article  CAS  PubMed  Google Scholar 

  73. Ponomarenko, M.P., Ponomarenko, J.V., Frolov, A.S., et al., Identification of sequence-dependent features correlating to activity of DNA sites interacting with proteins, Bioinformatics, 1999, vol. 15, no. 7—8, pp. 687—703. https://doi.org/10.1093/bioinformatics/15.7.687

    Article  CAS  PubMed  Google Scholar 

  74. Karas, H., Knuuppel, R., Schulz, W., et al., Combining structural analysis of DNA with search routines for the detection of transcription regulatory elements, Comput. Appl. Biosci., 1996, vol. 12, no. 5, pp. 441—446.

    CAS  PubMed  Google Scholar 

  75. Kimura, M., Evolutionary rate at the molecular level, Nature, 1968, vol. 217, no. 5129, pp. 624—626. https://doi.org/10.1038/217624a0

    Article  CAS  PubMed  Google Scholar 

  76. Suslov, V.V., Ponomarenko, P.M., Efimov, V.M., et al., SNPs in the HIV-1 TATA box and the AIDS pandemic, J. Bioinf. Comput. Biol., 2010, vol. 8, no. 3, pp. 607—625. https://doi.org/10.1142/S0219720010004677

    Article  CAS  Google Scholar 

  77. Waardenberg, A.J., Basset, S.D., Bouveret, R., and Harvey, R.P., CompGO: an R package for comparing and visualizing gene ontology enrichment differences between DNA binding experiments, BMC Bioinf., 2015, vol. 16, p. 275. https://doi.org/10.1186/s12859-015-0701-2

    Article  CAS  Google Scholar 

  78. Ponomarenko, M., Rasskazov, D., Chadaeva, I., et al., SNP_TATA_Comparator: genomewide landmarks for preventive personalized medicine, Front. Biosci., 2017, vol. 9, no. 2, pp. 276—306. https://doi.org/10.2741/s488

    Article  Google Scholar 

  79. Haeussler, M., Raney, B.J., Hinrichs, A.S., et al., Navigating protected genomics data with UCSC genome browser in a box, Bioinformatics, 2015, vol. 31, no. 5, pp. 764—766. https://doi.org/10.1093/bioinformatics/btu712

    Article  CAS  PubMed  Google Scholar 

  80. Lu, Z., PubMed and beyond: a survey of web tools for searching biomedical literature, Database (Oxford), 2011, vol. 2011, p. baq036. https://doi.org/10.1093/database/baq036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Denis, A., Mergaert, L., Fostier, C., et al., Orphan diseases and orphan medicines: a Belgian and European study, J. Pharm. Belg., 2009, vol. 86, no. 4, pp. 131—137.

    Google Scholar 

  82. Rubbert-Roth, A., Orphan diseases in rheumatology: exemplified by polyarthritis nodosa, Z. Rheumatol., 2012, vol. 71, no. 2, pp. 119—121. https://doi.org/10.1007/s00393-011-0902-7

    Article  CAS  PubMed  Google Scholar 

  83. Brewer, G.J., Drug development for orphan diseases in the context of personalized medicine, Transl. Res., 2009, vol. 154, no. 6, pp. 314—322. https://doi.org/10.1016/j.trsl.2009.03.008

    Article  CAS  PubMed  Google Scholar 

  84. Drachkova, I., Savinkova, L., Arshinova, T., et al., The mechanism by which TATA-box polymorphisms associated with human hereditary diseases influence interactions with the TATA-binding protein, Hum. Mutat., 2014, vol. 35, no. 5, pp. 601—608. https://doi.org/10.1002/humu.22535

    Article  CAS  PubMed  Google Scholar 

  85. Arkova, O., Kuznetsov, N., Fedorova, O., and Savinkova, L., A real-time study of the interaction of TBP with a TATA box-containing duplex identical to an ancestral or minor allele of human gene LEP or TPI, J. Biomol. Struct. Dyn., 2017, vol. 35, no. 14, pp. 3070—3081. https://doi.org/10.1080/07391102.2016.1241190

    Article  CAS  PubMed  Google Scholar 

  86. Ponomarenko, P.M., Suslov, V.V., Savinkova, L., et al., A precise equation of equilibrium of four steps of TBP binding with the TATA box for prognosis of phenotypic manifestation of mutations, Biophysics (Moscow), 2010, vol. 55, no. 3, pp. 358—369. https://doi.org/10.1134/S0006350910030036

    Article  Google Scholar 

  87. Ponomarenko, P.M., Ponomarenko, M.P., Drachkova, I.A., et al., Prediction of the affinity of the TATA-binding protein to TATA boxes with single nucleotide polymorphisms, Mol. Biol. (Moscow), 2009, vol. 43, no. 3, pp. 472—479. https://doi.org/10.1134/S0026893309030157

    Article  CAS  Google Scholar 

  88. Deplancke, B., Alpern, D., and Gardeux, V., The genetics of transcription factor DNA binding variation, Cell, 2016, vol. 166, no. 3, pp. 538—554. https://doi.org/10.1016/j.cell.2016.07.012

    Article  CAS  PubMed  Google Scholar 

  89. Gunbin, K.V., Ponomarenko, M.P., Suslov, V.V., et al., Evolution of brain active gene promoters in human lineage towards the increased plasticity of gene regulation, Mol. Neurobiol., 2018, vol. 55, no. 3, pp. 1871—1904. https://doi.org/10.1007/s12035-017-0427-4

    Article  CAS  PubMed  Google Scholar 

  90. Wu, J., Wu, M., Li, L., et al., dbWGFP: a database and web server of human whole-genome single nucleotide variants and their functional predictions, Database (Oxford), 2016, vol. 2016, p. baw024. https://doi.org/10.1093/database/baw024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Haldane, J.B.S., The cost of natural selection, J. Genet., 1957, vol. 55, no. 3, pp. 511—524.

    Article  Google Scholar 

Download references

Funding

The text of this paper was written by M.P. Ponomarenko with the support of the Ministry of Education and Science of the Russian Federation within the Program for Enhancing the Competitiveness of Leading Russian Universities among the World’s Leading Research and Education Centers (project 5-100); the concept and the study design (N.A. Kolchanov) were supported by the Integration Project of the Siberian Branch of the Russian Academy of Sciences no. 0324-2018-0021; and the Web service update (D.A. Rasskazov, I.V. Chadaeva, and E.A. Oshchepkova) and data analysis (E.B. Sarypova, I.A. Drachkova, and L.K. Savinkova) were supported by projects no. 0324-2019-0040 and no. 0324-2019-0042, respectively, from the Russian Government Budget.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Ponomarenko.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any research using animals as an object. This article does not contain any research involving people as an object.

Additional information

Translated by K. Lazarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomarenko, M.P., Rasskazov, D.A., Chadaeva, I.V. et al. Candidate SNP Markers of Atherosclerosis That May Significantly Change the Affinity of the TATA-Binding Protein for the Human Gene Promoters. Russ J Genet 55, 1137–1151 (2019). https://doi.org/10.1134/S1022795419090114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419090114

Keywords:

Navigation